User interface language: English | Español

Date November 2013 Marks available 3 Reference code 13N.1.hl.TZ0.12
Level HL only Paper 1 Time zone TZ0
Command term Find and Hence Question number 12 Adapted from N/A

Question

Consider the complex number \(z = \cos \theta  + {\text{i}}\sin \theta \).

The region S is bounded by the curve \(y = \sin x{\cos ^2}x\) and the x-axis between \(x = 0\) and \(x = \frac{\pi }{2}\).

Use De Moivre’s theorem to show that \({z^n} + {z^{ - n}} = 2\cos n\theta ,{\text{ }}n \in {\mathbb{Z}^ + }\).

[2]
a.

Expand \({\left( {z + {z^{ - 1}}} \right)^4}\).

[1]
b.

Hence show that \({\cos ^4}\theta  = p\cos 4\theta  + q\cos 2\theta  + r\), where \(p,{\text{ }}q\) and \(r\) are constants to be determined.

[4]
c.

Show that \({\cos ^6}\theta  = \frac{1}{{32}}\cos 6\theta  + \frac{3}{{16}}\cos 4\theta  + \frac{{15}}{{32}}\cos 2\theta  + \frac{5}{{16}}\).

[3]
d.

Hence find the value of \(\int_0^{\frac{\pi }{2}} {{{\cos }^6}\theta {\text{d}}\theta } \).

[3]
e.

S is rotated through \(2\pi \) radians about the x-axis. Find the value of the volume generated.

[4]
f.

(i)     Write down an expression for the constant term in the expansion of \({\left( {z + {z^{ - 1}}} \right)^{2k}}\), \(k \in {\mathbb{Z}^ + }\).

(ii)     Hence determine an expression for \(\int_0^{\frac{\pi }{2}} {{{\cos }^{2k}}\theta {\text{d}}\theta } \) in terms of k.

[3]
g.

Markscheme

\({z^n} + {z^{ - n}} = \cos n\theta  + i\sin n\theta  + \cos ( - n\theta ) + i\sin ( - n\theta )\)     M1

\( = \cos n\theta  + \cos n\theta  + i\sin n\theta  - i\sin n\theta \)     A1

\( = 2\cos n\theta \)     AG

[2 marks]

a.

(b)     \({\left( {z + {z^{ - 1}}} \right)^4} = {z^4} + 4{z^3}\left( {\frac{1}{z}} \right) + 6{z^2}\left( {\frac{1}{{{z^2}}}} \right) + 4z\left( {\frac{1}{{{z^3}}}} \right) + \frac{1}{{{z^4}}}\)     A1

 

Note:     Accept \({\left( {z + {z^{ - 1}}} \right)^4} = 16{\cos ^4}\theta \).

 

[1 mark]

b.

METHOD 1

\({\left( {z + {z^{ - 1}}} \right)^4} = \left( {{z^4} + \frac{1}{{{z^4}}}} \right) + 4\left( {{z^2} + \frac{1}{{{z^2}}}} \right) + 6\)     M1

\({(2\cos \theta )^4} = 2\cos 4\theta  + 8\cos 2\theta  + 6\)     A1A1

 

Note:     Award A1 for RHS, A1 for LHS, independent of the M1.

 

\({\cos ^4}\theta  = \frac{1}{8}\cos 4\theta  + \frac{1}{2}\cos 2\theta  + \frac{3}{8}\)     A1

\(\left( {{\text{or }}p = \frac{1}{8},{\text{ }}q = \frac{1}{2},{\text{ }}r = \frac{3}{8}} \right)\)

METHOD 2

\({\cos ^4}\theta  = {\left( {\frac{{\cos 2\theta  + 1}}{2}} \right)^2}\)     M1

\( = \frac{1}{4}({\cos ^2}2\theta  + 2\cos 2\theta  + 1)\)     A1

\( = \frac{1}{4}\left( {\frac{{\cos 4\theta  + 1}}{2} + 2\cos 2\theta  + 1} \right)\)     A1

\({\cos ^4}\theta  = \frac{1}{8}\cos 4\theta  + \frac{1}{2}\cos 2\theta  + \frac{3}{8}\)     A1

\(\left( {{\text{or }}p = \frac{1}{8},{\text{ }}q = \frac{1}{2},{\text{ }}r = \frac{3}{8}} \right)\)

[4 marks]

c.

\({\left( {z + {z^{ - 1}}} \right)^6} = {z^6} + 6{z^5}\left( {\frac{1}{z}} \right) + 15{z^4}\left( {\frac{1}{{{z^2}}}} \right) + 20{z^3}\left( {\frac{1}{{{z^3}}}} \right) + 15{z^2}\left( {\frac{1}{{{z^4}}}} \right) + 6z\left( {\frac{1}{{{z^5}}}} \right) + \frac{1}{{{z^6}}}\)     M1

\({\left( {z + {z^{ - 1}}} \right)^6} = \left( {{z^6} + \frac{1}{{{z^6}}}} \right) + 6\left( {{z^4} + \frac{1}{{{z^4}}}} \right) + 15\left( {{z^2} + \frac{1}{{{z^2}}}} \right) + 20\)

\({(2\cos \theta )^6} = 2\cos 6\theta  + 12\cos 4\theta  + 30\cos 2\theta  + 20\)     A1A1

 

Note:     Award A1 for RHS, A1 for LHS, independent of the M1.

 

\({\cos ^6}\theta  = \frac{1}{{32}}\cos 6\theta  + \frac{3}{{16}}\cos 4\theta  + \frac{{15}}{{32}}\cos 2\theta  + \frac{5}{{16}}\)     AG

 

Note:     Accept a purely trigonometric solution as for (c).

 

[3 marks]

d.

\(\int_0^{\frac{\pi }{2}} {{{\cos }^6}\theta {\text{d}}\theta  = \int_0^{\frac{\pi }{2}} {\left( {\frac{1}{{32}}\cos 6\theta  + \frac{3}{{16}}\cos 4\theta  + \frac{{15}}{{32}}\cos 2\theta  + \frac{5}{{16}}} \right){\text{d}}\theta } } \)

\( = \left[ {\frac{1}{{192}}\sin 6\theta  + \frac{3}{{64}}\sin 4\theta  + \frac{{15}}{{64}}\sin 2\theta  + \frac{5}{{16}}\theta } \right]_0^{\frac{\pi }{2}}\)     M1A1

\( = \frac{{5\pi }}{{32}}\)     A1

[3 marks]

e.

\({\text{V}} = \pi \int_0^{\frac{\pi }{2}} {{{\sin }^2}x{{\cos }^4}x{\text{d}}x} \)     M1

\( = \pi \int_0^{\frac{\pi }{2}} {{{\cos }^4}x{\text{d}}x - \pi \int_0^{\frac{\pi }{2}} {{{\cos }^6}x{\text{d}}x} } \)     M1

\(\int_0^{\frac{\pi }{2}} {{{\cos }^4}x{\text{d}}x}  = \frac{{3\pi }}{{16}}\)     A1

\({\text{V}} = \frac{{3{\pi ^2}}}{{16}} - \frac{{5{\pi ^2}}}{{32}} = \frac{{{\pi ^2}}}{{32}}\)     A1

 

Note:     Follow through from an incorrect r in (c) provided the final answer is positive.

f.

(i)     constant term = \(\left( \begin{array}{c}2k\\k\end{array} \right)\) \( = \frac{{(2k)!}}{{k!k!}} = \frac{{(2k)!}}{{{{(k!)}^2}}}{\text{ (accept }}C_k^{2k})\)     A1

(ii)     \({2^{2k}}\int_0^{\frac{\pi }{2}} {{{\cos }^{2k}}\theta {\text{d}}\theta  = \frac{{(2k)!\pi }}{{{{(k!)}^2}}}\frac{\pi }{2}} \)     A1

          \(\int_0^{\frac{\pi }{2}} {{{\cos }^{2k}}\theta {\text{d}}\theta  = \frac{{(2k)!\pi }}{{{2^{2k + 1}}{{(k!)}^2}}}} \) \(\left( {{\rm{or}}\frac{{\left( \begin{array}{c}2k\\k\end{array} \right)\pi }}{{{2^{2k + 1}}}}} \right)\)     A1

[3 marks]

g.

Examiners report

Part a) has appeared several times before, though with it again being a ‘show that’ question, some candidates still need to be more aware of the need to show every step in their working, including the result that \(\sin ( - n\theta ) =  - \sin (n\theta )\).

a.

Part b) was usually answered correctly.

b.

Part c) was again often answered correctly, though some candidates often less successfully utilised a trig-only approach rather than taking note of part b).

c.

Part d) was a good source of marks for those who kept with the spirit of using complex numbers for this type of question. Some limited attempts at trig-only solutions were seen, and correct solutions using this approach were extremely rare.

d.

Part e) was well answered, though numerical slips were often common. A small number integrated \(\sin n\theta \) as \(n\cos n\theta \).

A large number of candidates did not realise the help that part e) inevitably provided for part f). Some correctly expressed the volume as \(\pi \int {{{\cos }^4}x{\text{d}}x - \pi \int {{{\cos }^6}x{\text{d}}x} } \) and thus gained the first 2 marks but were able to progress no further. Only a small number of able candidates were able to obtain the correct answer of \(\frac{{{\pi ^2}}}{{32}}\).

e.
[N/A]
f.

Part g) proved to be a challenge for the vast majority, though it was pleasing to see some of the highest scoring candidates gain all 3 marks.

g.

Syllabus sections

Topic 6 - Core: Calculus » 6.5 » Definite integrals.

View options