Date | None Specimen | Marks available | 3 | Reference code | SPNone.3ca.hl.TZ0.4 |
Level | HL only | Paper | Paper 3 Calculus | Time zone | TZ0 |
Command term | Determine | Question number | 4 | Adapted from | N/A |
Question
Let f(x)=2x+|x| , x∈R .
Prove that f is continuous but not differentiable at the point (0, 0) .
Determine the value of ∫a−af(x)dx where a>0 .
Markscheme
we note that f(0)=0, f(x)=3x for x>0 and f(x)=x for x<0
lim M1A1
\mathop {\lim }\limits_{x \to {0^ - }} f(x) = \mathop {\lim }\limits_{x \to {0^ - }} 3x = 0 A1
since f(0) = 0 , the function is continuous when x = 0 AG
\mathop {\lim }\limits_{x \to {0^ - }} \frac{{f(0 + h) - f(0)}}{h} = \mathop {\lim }\limits_{x \to {0^ - }} \frac{h}{h} = 1 M1A1
\mathop {\lim }\limits_{x \to {0^ + }} \frac{{f(0 + h) - f(0)}}{h} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{3h}}{h} = 3 A1
these limits are unequal R1
so f is not differentiable when x = 0 AG
[7 marks]
\int_{ - a}^a {f(x){\text{d}}x = \int_{ - a}^0 {x{\text{d}}x + \int_0^a {3x{\text{d}}x} } } M1
= \left[ {\frac{{{x^2}}}{2}} \right]_{ - a}^0 + \left[ {\frac{{3{x^2}}}{2}} \right]_0^a A1
= {a^2} A1
[3 marks]