Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date None Specimen Marks available 3 Reference code SPNone.3ca.hl.TZ0.4
Level HL only Paper Paper 3 Calculus Time zone TZ0
Command term Determine Question number 4 Adapted from N/A

Question

Let f(x)=2x+|x| , xR .

Prove that f is continuous but not differentiable at the point (0, 0) .

[7]
a.

Determine the value of aaf(x)dx where a>0 .

[3]
b.

Markscheme

we note that f(0)=0, f(x)=3x for x>0 and f(x)=x for x<0

lim     M1A1

\mathop {\lim }\limits_{x \to {0^ - }} f(x) = \mathop {\lim }\limits_{x \to {0^ - }} 3x = 0     A1

since f(0) = 0 , the function is continuous when x = 0     AG

\mathop {\lim }\limits_{x \to {0^ - }} \frac{{f(0 + h) - f(0)}}{h} = \mathop {\lim }\limits_{x \to {0^ - }} \frac{h}{h} = 1     M1A1

\mathop {\lim }\limits_{x \to {0^ + }} \frac{{f(0 + h) - f(0)}}{h} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{3h}}{h} = 3     A1

these limits are unequal     R1

so f is not differentiable when x = 0     AG

[7 marks]

a.

\int_{ - a}^a {f(x){\text{d}}x = \int_{ - a}^0 {x{\text{d}}x + \int_0^a {3x{\text{d}}x} } }     M1

= \left[ {\frac{{{x^2}}}{2}} \right]_{ - a}^0 + \left[ {\frac{{3{x^2}}}{2}} \right]_0^a     A1

= {a^2}     A1

[3 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 6 - Core: Calculus » 6.5 » Definite integrals.

View options