Date | November 2017 | Marks available | 4 | Reference code | 17N.3ca.hl.TZ0.5 |
Level | HL only | Paper | Paper 3 Calculus | Time zone | TZ0 |
Command term | Prove that | Question number | 5 | Adapted from | N/A |
Question
Consider the function \(f(x) = \sin (p\arcsin x),{\text{ }} - 1 < x < 1\) and \(p \in \mathbb{R}\).
The function \(f\) and its derivatives satisfy
\((1 - {x^2}){f^{(n + 2)}}(x) - (2n + 1)x{f^{(n + 1)}}(x) + ({p^2} - {n^2}){f^{(n)}}(x) = 0,{\text{ }}n \in \mathbb{N}\)
where \({f^{(n)}}(x)\) denotes the \(n\) th derivative of \(f(x)\) and \({f^{(0)}}(x)\) is \(f(x)\).
Show that \(f’(0) = p\).
Show that \({f^{(n + 2)}}(0) = ({n^2} - {p^2}){f^{(n)}}(0)\).
For \(p \in \mathbb{R}\backslash \{ \pm 1,{\text{ }} \pm 3\} \), show that the Maclaurin series for \(f(x)\), up to and including the \({x^5}\) term, is
\(px + \frac{{p(1 - {p^2})}}{{3!}}{x^3} + \frac{{p(9 - {p^2})(1 - {p^2})}}{{5!}}{x^5}\).
Hence or otherwise, find \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin (p\arcsin x)}}{x}\).
If \(p\) is an odd integer, prove that the Maclaurin series for \(f(x)\) is a polynomial of degree \(p\).
Markscheme
\(f’(x) = \frac{{p\cos (p\arcsin x)}}{{\sqrt {1 - {x^2}} }}\) (M1)A1
Note: Award M1 for attempting to use the chain rule.
\(f’(0) = p\) AG
[2 marks]
EITHER
\({f^{(n + 2)}}(0) + ({p^2} - {n^2}){f^{(n)}}(0) = 0\) A1
OR
for eg, \((1 - {x^2}){f^{(n + 2)}}(x) = (2n + 1)x{f^{(n + 1)}}(x) - ({p^2} - {n^2}){f^{(n)}}(x)\) A1
Note: Award A1 for eg, \((1 - {x^2}){f^{(n + 2)}}(x) - (2n + 1)x{f^{(n + 1)}}(x) = - ({p^2} - {n^2}){f^{(n)}}(x)\).
THEN
\({f^{(n + 2)}}(0) = ({n^2} - {p^2}){f^{(n)}}(0)\) AG
[1 mark]
considering \(f\) and its derivatives at \(x = 0\) (M1)
\(f(0) = 0\) and \(f’(0) = p\) from (a) A1
\(f’’(0) = 0,{\text{ }}{f^{(4)}}(0) = 0\) A1
\({f^{(3)}}(0) = (1 - {p^2}){f^{(1)}}(0) = (1 - {p^2})p\),
\({f^{(5)}}(0) = (9 - {p^2}){f^{(3)}}(0) = (9 - {p^2})(1 - {p^2})p\) A1
Note: Only award the last A1 if either \({f^{(3)}}(0) = (1 - {p^2}){f^{(1)}}(0)\) and \({f^{(5)}}(0) = (9 - {p^2}){f^{(3)}}(0)\) have been stated or the general Maclaurin series has been stated and used.
\(px + \frac{{p(1 - {p^2})}}{{3!}}{x^3} + \frac{{p(9 - {p^2})(1 - {p^2})}}{{5!}}{x^5}\) AG
[4 marks]
METHOD 1
\(\mathop {\lim }\limits_{x \to 0} \frac{{\sin (p\arcsin x)}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{px + \frac{{p(1 - {p^2})}}{{3!}}{x^3} + \ldots }}{3}\) M1
\( = p\) A1
METHOD 2
by l’Hôpital’s rule \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin (p\arcsin x)}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{p\cos (p\arcsin x)}}{{\sqrt {1 - {x^2}} }}\) M1
\( = p\) A1
[2 marks]
the coefficients of all even powers of \(x\) are zero A1
the coefficient of \({x^p}\) for (\(p\) odd) is non-zero (or equivalent eg,
the coefficients of all odd powers of \(x\) up to \(p\) are non-zero) A1
\({f^{(p + 2)}}(0) = ({p^2} - {p^2}){f^{(p)}}(0) = 0\) and so the coefficient of \({x^{p + 2}}\) is zero A1
the coefficients of all odd powers of \(x\) greater than \(p + 2\) are zero (or equivalent) A1
so the Maclaurin series for \(f(x)\) is a polynomial of degree \(p\) AG
[4 marks]