Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2014 Marks available 2 Reference code 14M.3ca.hl.TZ0.1
Level HL only Paper Paper 3 Calculus Time zone TZ0
Command term Show that Question number 1 Adapted from N/A

Question

Consider the functions f and g given by f(x)=ex+ex2 and g(x)=exex2.

Show that f(x)=g(x) and g(x)=f(x).

[2]
a.

Find the first three non-zero terms in the Maclaurin expansion of f(x).

[5]
b.

Hence find the value of limx01f(x)x2.

[3]
c.

Find the value of the improper integral 0g(x)[f(x)]2dx.

[6]
d.

Markscheme

any correct step before the given answer     A1AG

eg, f(x)=(ex)+(ex)2=exex2=g(x)

any correct step before the given answer     A1AG

eg, g(x)=(ex)(ex)2=ex+ex2=f(x)

[2 marks]

a.

METHOD 1

statement and attempted use of the general Maclaurin expansion formula     (M1)

f(0)=1; g(0)=0 (or equivalent in terms of derivative values)   A1A1

f(x)=1+x22+x424 or f(x)=1+x22!+x44!     A1A1

METHOD 2

ex=1+x+x22!+x33!+x44!+     A1

ex=1x+x22!x33!+x44!+     A1

adding and dividing by 2     M1

f(x)=1+x22+x424 or f(x)=1+x22!+x44!     A1A1

 

Notes: Accept 1, x22 and x424 or 1, x22! and x44!.

     Award A1 if two correct terms are seen.

 

[5 marks]

b.

METHOD 1

attempted use of the Maclaurin expansion from (b)     M1

limx01f(x)x2=limx01(1+x22+x424+)x2

limx0(12x224)     A1

=12     A1

METHOD 2

attempted use of L’Hôpital and result from (a)     M1

limx01f(x)x2=limx0g(x)2x

limx0f(x)2     A1

=12     A1

[3 marks]

c.

METHOD 1

use of the substitution u=f(x) and (du=g(x)dx)     (M1)(A1)

attempt to integrate 1duu2     (M1)

obtain [1u]1 or [1f(x)]0     A1

recognition of an improper integral by use of a limit or statement saying the integral converges     R1

obtain 1     A1     N0

METHOD 2

0exex2(ex+ex2)2dx=02(exex)(ex+ex)2dx     (M1)

use of the substitution u=ex+ex and (du=exexdx)     (M1)

attempt to integrate 22duu2     (M1)

obtain [2u]2     A1

recognition of an improper integral by use of a limit or statement saying the integral converges     R1

obtain 1     A1     N0

[6 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.

Syllabus sections

Topic 9 - Option: Calculus » 9.6 » Maclaurin series for ex , sinx , cosx , ln(1+x) , (1+x)p , PQ .

View options