Date | May 2014 | Marks available | 5 | Reference code | 14M.3ca.hl.TZ0.1 |
Level | HL only | Paper | Paper 3 Calculus | Time zone | TZ0 |
Command term | Find | Question number | 1 | Adapted from | N/A |
Question
Consider the functions \(f\) and \(g\) given by \(f(x) = \frac{{{{\text{e}}^x} + {{\text{e}}^{ - x}}}}{2}{\text{ and }}g(x) = \frac{{{{\text{e}}^x} - {{\text{e}}^{ - x}}}}{2}\).
Show that \(f'(x) = g(x)\) and \(g'(x) = f(x)\).
Find the first three non-zero terms in the Maclaurin expansion of \(f(x)\).
Hence find the value of \(\mathop {{\text{lim}}}\limits_{x \to 0} \frac{{1 - f(x)}}{{{x^2}}}\).
Find the value of the improper integral \(\int_0^\infty {\frac{{g(x)}}{{{{\left[ {f(x)} \right]}^2}}}{\text{d}}x} \).
Markscheme
any correct step before the given answer A1AG
eg, \(f'(x) = \frac{{{{\left( {{{\text{e}}^x}} \right)}^\prime } + {{\left( {{{\text{e}}^{ - x}}} \right)}^\prime }}}{2} = \frac{{{{\text{e}}^x} - {{\text{e}}^{ - x}}}}{2} = g(x)\)
any correct step before the given answer A1AG
eg, \(g'(x) = \frac{{{{\left( {{{\text{e}}^x}} \right)}^\prime } - {{\left( {{{\text{e}}^{ - x}}} \right)}^\prime }}}{2} = \frac{{{{\text{e}}^x} + {{\text{e}}^{ - x}}}}{2} = f(x)\)
[2 marks]
METHOD 1
statement and attempted use of the general Maclaurin expansion formula (M1)
\(f(0) = 1;{\text{ }}g(0) = 0\) (or equivalent in terms of derivative values) A1A1
\(f(x) = 1 + \frac{{{x^2}}}{2} + \frac{{{x^4}}}{{24}}\) or \(f(x) = 1 + \frac{{{x^2}}}{{2!}} + \frac{{{x^4}}}{{4!}}\) A1A1
METHOD 2
\({{\text{e}}^x} = 1 + x + \frac{{{x^2}}}{{2!}} + \frac{{{x^3}}}{{3!}} + \frac{{{x^4}}}{{4!}} + \ldots \) A1
\({{\text{e}}^{ - x}} = 1 - x + \frac{{{x^2}}}{{2!}} - \frac{{{x^3}}}{{3!}} + \frac{{{x^4}}}{{4!}} + \ldots \) A1
adding and dividing by 2 M1
\(f(x) = 1 + \frac{{{x^2}}}{2} + \frac{{{x^4}}}{{24}}\) or \(f(x) = 1 + \frac{{{x^2}}}{{2!}} + \frac{{{x^4}}}{{4!}}\) A1A1
Notes: Accept 1, \(\frac{{{x^2}}}{2}\) and \(\frac{{{x^4}}}{{24}}\) or 1, \(\frac{{{x^2}}}{{2!}}\) and \(\frac{{{x^4}}}{{4!}}\).
Award A1 if two correct terms are seen.
[5 marks]
METHOD 1
attempted use of the Maclaurin expansion from (b) M1
\(\mathop {{\text{lim}}}\limits_{x \to 0} \frac{{1 - f(x)}}{{{x^2}}} = \mathop {{\text{lim}}}\limits_{x \to 0} \frac{{1 - \left( {1 + \frac{{{x^2}}}{2} + \frac{{{x^4}}}{{24}} + \ldots } \right)}}{{{x^2}}}\)
\(\mathop {{\text{lim}}}\limits_{x \to 0} \left( { - \frac{1}{2} - \frac{{{x^2}}}{{24}} - \ldots } \right)\) A1
\( = - \frac{1}{2}\) A1
METHOD 2
attempted use of L’Hôpital and result from (a) M1
\(\mathop {{\text{lim}}}\limits_{x \to 0} \frac{{1 - f(x)}}{{{x^2}}} = \mathop {{\text{lim}}}\limits_{x \to 0} \frac{{ - g(x)}}{{2x}}\)
\(\mathop {{\text{lim}}}\limits_{x \to 0} \frac{{ - f(x)}}{2}\) A1
\( = - \frac{1}{2}\) A1
[3 marks]
METHOD 1
use of the substitution \(u = f(x)\) and \(\left( {{\text{d}}u = g(x){\text{d}}x} \right)\) (M1)(A1)
attempt to integrate \(\int_1^\infty {\frac{{{\text{d}}u}}{{{u^2}}}} \) (M1)
obtain \(\left[ { - \frac{1}{u}} \right]_1^\infty \) or \(\left[ { - \frac{1}{{f(x)}}} \right]_0^\infty \) A1
recognition of an improper integral by use of a limit or statement saying the integral converges R1
obtain 1 A1 N0
METHOD 2
\(\int_0^\infty {\frac{{\frac{{{{\text{e}}^x} - {{\text{e}}^{ - x}}}}{2}}}{{{{\left( {\frac{{{{\text{e}}^x} + {{\text{e}}^{ - x}}}}{2}} \right)}^2}}}{\text{d}}x = \int_0^\infty {\frac{{2\left( {{{\text{e}}^x} - {{\text{e}}^{ - x}}} \right)}}{{{{\left( {{{\text{e}}^x} + {{\text{e}}^{ - x}}} \right)}^2}}}{\text{d}}x} } \) (M1)
use of the substitution \(u = {{\text{e}}^x} + {{\text{e}}^{ - x}}\) and \(\left( {{\text{d}}u = {{\text{e}}^x} - {{\text{e}}^{ - x}}{\text{d}}x} \right)\) (M1)
attempt to integrate \(\int_2^\infty {\frac{{2{\text{d}}u}}{{{u^2}}}} \) (M1)
obtain \(\left[ { - \frac{2}{u}} \right]_2^\infty \) A1
recognition of an improper integral by use of a limit or statement saying the integral converges R1
obtain 1 A1 N0
[6 marks]