Date | November 2010 | Marks available | 9 | Reference code | 10N.3ca.hl.TZ0.3 |
Level | HL only | Paper | Paper 3 Calculus | Time zone | TZ0 |
Command term | Find, Hence, and Write down | Question number | 3 | Adapted from | N/A |
Question
(a) Using the Maclaurin series for the function \({{\text{e}}^x}\), write down the first four terms of the Maclaurin series for \({{\text{e}}^{ - \frac{{{x^2}}}{2}}}\).
(b) Hence find the first four terms of the series for \(\int_0^x {{{\text{e}}^{ - \frac{{{u^2}}}{2}}}} {\text{d}}u\).
(c) Use the result from part (b) to find an approximate value for \(\frac{1}{{\sqrt {2\pi } }}\int_0^1 {{{\text{e}}^{ - \frac{{{x^2}}}{2}}}{\text{d}}x} \).
Markscheme
(a) \({{\text{e}}^x} = 1 + x + \frac{{{x^2}}}{{2!}} + \frac{{{x^3}}}{{3!}} + \frac{{{x^4}}}{{4!}} + \ldots \)
putting \(x = \frac{{ - {x^2}}}{2}\) (M1)
\({{\text{e}}^{ - \frac{{{x^2}}}{2}}} \approx 1 - \frac{{{x^2}}}{2} + \frac{{{x^4}}}{{{2^2} \times 2!}} - \frac{{{x^6}}}{{{2^3} \times 3!}} \approx \left( {1 - \frac{{{x^2}}}{2} + \frac{{{x^4}}}{8} - \frac{{{x^6}}}{{48}}} \right)\) A2
[3 marks]
(b) \(\int_0^x {{{\text{e}}^{ - \frac{{{u^2}}}{2}}}{\text{d}}u \approx \left[ {u - \frac{{{u^3}}}{{3 \times 2}} + \frac{{{u^5}}}{{5 \times {2^2} \times 2!}} - \frac{{{u^7}}}{{7 \times {2^3} \times 3!}}} \right]_0^x} \) M1(A1)
\( = x - \frac{{{x^3}}}{{3 \times 2}} + \frac{{{x^5}}}{{5 \times {2^2} \times 2!}} - \frac{{{x^7}}}{{7 \times {2^3} \times 3!}}\) A1
\(\left( { = x - \frac{{{x^3}}}{6} + \frac{{{x^5}}}{{40}} - \frac{{{x^7}}}{{336}}} \right)\)
[3 marks]
(c) putting x = 1 in part (b) gives \(\int_0^1 {{{\text{e}}^{ - \frac{{{x^2}}}{2}}}{\text{d}}x \approx } 0.85535 \ldots \) (M1)(A1)
\(\frac{1}{{\sqrt {2\pi } }}\int_0^1 {{{\text{e}}^{ - \frac{{{x^2}}}{2}}}{\text{d}}x \approx } 0.341\) A1
[3 marks]
Total [9 marks]
Examiners report
This was one of the most successfully answered questions. Some candidates however failed to use the data booklet for the expansion of the series, thereby wasting valuable time.