User interface language: English | Español

Date November 2010 Marks available 9 Reference code 10N.3ca.hl.TZ0.3
Level HL only Paper Paper 3 Calculus Time zone TZ0
Command term Find, Hence, and Write down Question number 3 Adapted from N/A

Question

(a)     Using the Maclaurin series for the function \({{\text{e}}^x}\), write down the first four terms of the Maclaurin series for \({{\text{e}}^{ - \frac{{{x^2}}}{2}}}\).

(b)     Hence find the first four terms of the series for \(\int_0^x {{{\text{e}}^{ - \frac{{{u^2}}}{2}}}} {\text{d}}u\).

(c)     Use the result from part (b) to find an approximate value for \(\frac{1}{{\sqrt {2\pi } }}\int_0^1 {{{\text{e}}^{ - \frac{{{x^2}}}{2}}}{\text{d}}x} \).

Markscheme

(a)     \({{\text{e}}^x} = 1 + x + \frac{{{x^2}}}{{2!}} + \frac{{{x^3}}}{{3!}} + \frac{{{x^4}}}{{4!}} +  \ldots \)

putting \(x = \frac{{ - {x^2}}}{2}\)     (M1)

\({{\text{e}}^{ - \frac{{{x^2}}}{2}}} \approx 1 - \frac{{{x^2}}}{2} + \frac{{{x^4}}}{{{2^2} \times 2!}} - \frac{{{x^6}}}{{{2^3} \times 3!}} \approx \left( {1 - \frac{{{x^2}}}{2} + \frac{{{x^4}}}{8} - \frac{{{x^6}}}{{48}}} \right)\)     A2

[3 marks]

 

(b)     \(\int_0^x {{{\text{e}}^{ - \frac{{{u^2}}}{2}}}{\text{d}}u \approx \left[ {u - \frac{{{u^3}}}{{3 \times 2}} + \frac{{{u^5}}}{{5 \times {2^2} \times 2!}} - \frac{{{u^7}}}{{7 \times {2^3} \times 3!}}} \right]_0^x} \)     M1(A1)

\( = x - \frac{{{x^3}}}{{3 \times 2}} + \frac{{{x^5}}}{{5 \times {2^2} \times 2!}} - \frac{{{x^7}}}{{7 \times {2^3} \times 3!}}\)     A1

\(\left( { = x - \frac{{{x^3}}}{6} + \frac{{{x^5}}}{{40}} - \frac{{{x^7}}}{{336}}} \right)\)

[3 marks]

 

(c)     putting x = 1 in part (b) gives \(\int_0^1 {{{\text{e}}^{ - \frac{{{x^2}}}{2}}}{\text{d}}x \approx } 0.85535 \ldots \)     (M1)(A1)

\(\frac{1}{{\sqrt {2\pi } }}\int_0^1 {{{\text{e}}^{ - \frac{{{x^2}}}{2}}}{\text{d}}x \approx } 0.341\)     A1

[3 marks]

 

Total [9 marks]

Examiners report

This was one of the most successfully answered questions. Some candidates however failed to use the data booklet for the expansion of the series, thereby wasting valuable time.

Syllabus sections

Topic 9 - Option: Calculus » 9.6 » Maclaurin series for \({{\text{e}}^x}\) , \(\\sin x\) , \(\cos x\) , \(\ln (1 + x)\) , \({(1 + x)^p}\) , \(P \in \mathbb{Q}\) .

View options