User interface language: English | Español

Date November 2015 Marks available 4 Reference code 15N.3ca.hl.TZ0.4
Level HL only Paper Paper 3 Calculus Time zone TZ0
Command term Hence and Show that Question number 4 Adapted from N/A

Question

Consider the function f(x)=11+x2, xRf(x)=11+x2, xR.

Illustrate graphically the inequality, 155r=1f(r5)<10f(x)dx<154r=0f(r5)155r=1f(r5)<10f(x)dx<154r=0f(r5).

[3]
a.

Use the inequality in part (a) to find a lower and upper bound for ππ.

[5]
b.

Show that n1r=0(1)rx2r=1+(1)n1x2n1+x2n1r=0(1)rx2r=1+(1)n1x2n1+x2.

[2]
c.

Hence show that π=4(n1r=0(1)r2r+1(1)n110x2n1+x2dx).

[4]
d.

Markscheme

     A1A1A1

A1 for upper rectangles, A1 for lower rectangles, A1 for curve in between with 0x1

hence 155r=1f(r5)<10f(x)dx<154r=0f(r5)     AG

[3 marks]

a.

attempting to integrate from 0 to 1     (M1)

10f(x)dx=[arctanx]10

=π4     A1

attempt to evaluate either summation     (M1)

155r=1f(r5)<π4<154r=0f(r5)

hence 455r=1f(r5)<π<454r=0f(r5)

so 2.93<π<3.33     A1A1

 

Note:     Accept any answers that round to 2.9 and 3.3.

[5 marks]

b.

EITHER

recognise n1r=0(1)rx2r as a geometric series with r=x2     M1

sum of n terms is 1(x2)n1x2=1+(1)n1x2n1+x2     M1AG

OR

n1r=0(1)r(1+x2)x2r=(1+x2)x0(1+x2)x2+(1+x2)x4+

+(1)n1(1+x2)x2n2     M1

cancelling out middle terms     M1

=1+(1)n1x2n     AG

[2 marks]

c.

n1r=0(1)rx2r=11+x2+(1)n1x2n1+x2

integrating from 0 to 1     M1

[n1r=0(1)rx2r+12r+1]10=10f(x)dx+(1)n110x2n1+x2dx     A1A1

10f(x)dx=π4     A1

so π=4(n1r=0(1)r2r+1(1)n110x2n1+x2dx)     AG

[4 marks]

Total [14 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.

Syllabus sections

Topic 9 - Option: Calculus » 9.6 » Use of substitution, products, integration and differentiation to obtain other series.

View options