Processing math: 100%

User interface language: English | Español

Date May 2017 Marks available 9 Reference code 17M.1.hl.TZ2.11
Level HL only Paper 1 Time zone TZ2
Command term Find and Express Question number 11 Adapted from N/A

Question

Let z=1cos2θisin2θ, zC, 0θπ.

Solve 2sin(x+60)=cos(x+30), 0x180.

[5]
a.

Show that sin105+cos105=12.

[3]
b.

Find the modulus and argument of z in terms of θ. Express each answer in its simplest form.

[9]
c.i.

Hence find the cube roots of z in modulus-argument form.

[5]
c.ii.

Markscheme

2sin(x+60)=cos(x+30)

2(sinxcos60+cosxsin60)=cosxcos30sinxsin30     (M1)(A1)

2sinx×12+2cosx×32=cosx×32sinx×12     A1

32sinx=32cosx

tanx=13     M1

x=150     A1

[5 marks]

a.

EITHER

choosing two appropriate angles, for example 60° and 45°     M1

sin105=sin60cos45+cos60sin45 and

cos105=cos60cos45sin60sin45     (A1)

sin105+cos105=32×12+12×12+12×1232×12     A1

=12     AG

OR

attempt to square the expression     M1

(sin105+cos105)2=sin2105+2sin105cos105+cos2105

(sin105+cos105)2=1+sin210     A1

=12     A1

sin105+cos105=12   AG

 

[3 marks]

b.

EITHER

z=(1cos2θ)isin2θ

|z|=(1cos2θ)2+(sin2θ)2     M1

|z|=12cos2θ+cos22θ+sin22θ     A1

=2(1cos2θ)     A1

=2(2sin2θ)

=2sinθ     A1

let arg(z)=α

tanα=sin2θ1cos2θ     M1

=2sinθcosθ2sin2θ     (A1)

=cotθ     A1

arg(z)=α=arctan(tan(π2θ))     A1

=θπ2     A1

OR

z=(1cos2θ)isin2θ

=2sin2θ2isinθcosθ     M1A1

=2sinθ(sinθicosθ)     (A1)

=2isinθ(cosθ+isinθ)     M1A1

=2sinθ(cos(θπ2)+isin(θπ2))     M1A1

|z|=2sinθ     A1

arg(z)=θπ2     A1

[9 marks]

c.i.

attempt to apply De Moivre’s theorem     M1

(1cos2θisin2θ)13=213(sinθ)13[cos(θπ2+2nπ3)+isin(θπ2+2nπ3)]     A1A1A1

 

Note:     A1 for modulus, A1 for dividing argument of z by 3 and A1 for 2nπ.

 

Hence cube roots are the above expression when n=1, 0, 1. Equivalent forms are acceptable.     A1

[5 marks]

c.ii.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.i.
[N/A]
c.ii.

Syllabus sections

Topic 1 - Core: Algebra » 1.6
Show 30 related questions

View options