User interface language: English | Español

Date November 2016 Marks available 4 Reference code 16N.1.hl.TZ0.8
Level HL only Paper 1 Time zone TZ0
Command term Find Question number 8 Adapted from N/A

Question

Consider the lines \({l_1}\) and \({l_2}\) defined by

\({l_1}:\) r \( = \left( {\begin{array}{*{20}{c}} { - 3} \\ { - 2} \\ a \end{array}} \right) + \beta \left( {\begin{array}{*{20}{c}} 1 \\ 4 \\ 2 \end{array}} \right)\) and \({l_2}:\frac{{6 - x}}{3} = \frac{{y - 2}}{4} = 1 - z\) where \(a\) is a constant.

Given that the lines \({l_1}\) and \({l_2}\) intersect at a point P,

find the value of \(a\);

[4]
a.

determine the coordinates of the point of intersection P.

[2]
b.

Markscheme

METHOD 1

\({l_1}:\)r \( = \left( {\begin{array}{*{20}{c}} { - 3} \\ { - 2} \\ a \end{array}} \right) = \beta \left( {\begin{array}{*{20}{c}} 1 \\ 4 \\ 2 \end{array}} \right) \Rightarrow \left\{ {\begin{array}{*{20}{l}} {x = - 3 + \beta } \\ {y = - 2 + 4\beta } \\ {z = a + 2\beta } \end{array}} \right.\)     M1

\(\frac{{6 - ( - 3 + \beta )}}{3} = \frac{{( - 2 + 4\beta ) - 2}}{4} \Rightarrow 4 = \frac{{4\beta }}{3} \Rightarrow \beta  = 3\)    M1A1

\(\frac{{6 - ( - 3 + \beta )}}{3} = 1 - (a + 2\beta ) \Rightarrow 2 =  - 5 - a \Rightarrow a =  - 7\)    A1

METHOD 2

\(\left\{ {\begin{array}{*{20}{l}} { - 3 + \beta = 6 - 3\lambda } \\ { - 2 + 4\beta = 4\lambda + 2} \\ {a + 2\beta = 1 - \lambda } \end{array}} \right.\)    M1

attempt to solve     M1

\(\lambda  = 2,{\text{ }}\beta  = 3\)    A1

\(a = 1 - \lambda  - 2\beta  =  - 7\)    A1

[4 marks]

a.

\(\overrightarrow {{\text{OP}}} = \left( {\begin{array}{*{20}{c}} { - 3} \\ { - 2} \\ { - 7} \end{array}} \right) + 3 \bullet \left( {\begin{array}{*{20}{c}} 1 \\ 4 \\ 2 \end{array}} \right)\)    (M1)

\( = \left( {\begin{array}{*{20}{c}} 0 \\ {10} \\ { - 1} \end{array}} \right)\)    A1

\(\therefore {\text{P}}(0,{\text{ 10, }} - 1)\)

[2 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 4 - Core: Vectors » 4.3 » Vector equation of a line in two and three dimensions: \(r = a + \lambda b\) .
Show 32 related questions

View options