User interface language: English | Español

Date November 2016 Marks available 4 Reference code 16N.1.hl.TZ0.8
Level HL only Paper 1 Time zone TZ0
Command term Find Question number 8 Adapted from N/A

Question

Consider the lines l1l1 and l2l2 defined by

l1:l1: r =(32a)+β(142)=32a+β142 and l2:6x3=y24=1zl2:6x3=y24=1z where aa is a constant.

Given that the lines l1l1 and l2l2 intersect at a point P,

find the value of aa;

[4]
a.

determine the coordinates of the point of intersection P.

[2]
b.

Markscheme

METHOD 1

l1:l1:r =(32a)=β(142){x=3+βy=2+4βz=a+2β=32a=β142x=3+βy=2+4βz=a+2β     M1

6(3+β)3=(2+4β)244=4β3β=36(3+β)3=(2+4β)244=4β3β=3    M1A1

6(3+β)3=1(a+2β)2=5aa=76(3+β)3=1(a+2β)2=5aa=7    A1

METHOD 2

{3+β=63λ2+4β=4λ+2a+2β=1λ3+β=63λ2+4β=4λ+2a+2β=1λ    M1

attempt to solve     M1

λ=2, β=3λ=2, β=3    A1

a=1λ2β=7a=1λ2β=7    A1

[4 marks]

a.

OP=(327)+3(142)OP=327+3142    (M1)

=(0101)=0101    A1

P(0, 10, 1)

[2 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 4 - Core: Vectors » 4.3 » Vector equation of a line in two and three dimensions: r=a+λb .
Show 32 related questions

View options