User interface language: English | Español

Date November 2017 Marks available 3 Reference code 17N.1.hl.TZ0.2
Level HL only Paper 1 Time zone TZ0
Command term Find Question number 2 Adapted from N/A

Question

The points A and B are given by \({\text{A}}(0,{\text{ }}3,{\text{ }} - 6)\) and \({\text{B}}(6,{\text{ }} - 5,{\text{ }}11)\).

The plane Π is defined by the equation \(4x - 3y + 2z = 20\).

Find a vector equation of the line L passing through the points A and B.

[3]
a.

Find the coordinates of the point of intersection of the line L with the plane Π.

[3]
b.

Markscheme

\(\overrightarrow {{\text{AB}}}  = \left( {\begin{array}{*{20}{c}}  6 \\   { - 8} \\   {17} \end{array}} \right)\)     (A1)

 

r = \(\left( {\begin{array}{*{20}{c}}  0 \\   3 \\   { - 6} \end{array}} \right) + \lambda \left( {\begin{array}{*{20}{c}}  6 \\   { - 8} \\   {17} \end{array}} \right)\) or r = \(\left( {\begin{array}{*{20}{c}}  6 \\   { - 5} \\   {11} \end{array}} \right) + \lambda \left( {\begin{array}{*{20}{c}}  6 \\   { - 8} \\   {17} \end{array}} \right)\)     M1A1

 

Note:     Award M1A0 if r = is not seen (or equivalent).

 

[3 marks]

a.

substitute line L in \(\Pi :4(6\lambda ) - 3(3 - 8\lambda ) + 2( - 6 + 17\lambda ) = 20\)     M1

\(82\lambda  = 41\)

\(\lambda  = \frac{1}{2}\)     (A1)

 

r = \(\left( {\begin{array}{*{20}{c}}  0 \\   3 \\   { - 6} \end{array}} \right) + \frac{1}{2}\left( {\begin{array}{*{20}{c}}  6 \\   { - 8} \\   {17} \end{array}} \right) = \left( {\begin{array}{*{20}{c}}  3 \\   { - 1} \\   {\frac{5}{2}} \end{array}} \right)\)

so coordinate is \(\left( {3,{\text{ }} - 1,{\text{ }}\frac{5}{2}} \right)\)     A1

 

Note:     Accept coordinate expressed as position vector \(\left( {\begin{array}{*{20}{c}}  3 \\   { - 1} \\   {\frac{5}{2}} \end{array}} \right)\).

 

[3 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 4 - Core: Vectors » 4.3 » Vector equation of a line in two and three dimensions: \(r = a + \lambda b\) .
Show 27 related questions

View options