User interface language: English | Español

Date November 2009 Marks available 19 Reference code 09N.2.hl.TZ0.11
Level HL only Paper 2 Time zone TZ0
Command term Find Question number 11 Adapted from N/A

Question

(a)     Find the coordinates of the point \(A\) on \({l_1}\) and the point \(B\) on \({l_2}\) such that \(\overrightarrow {{\text{AB}}} \) is perpendicular to both \({l_1}\) and \({l_2}\) .

(b)     Find \(\left| {{\text{AB}}} \right|\) .

(c)     Find the Cartesian equation of the plane \(\prod \) which contains \({l_1}\) and does not intersect \({l_2}\) .

Markscheme

(a)     on \({l_1}\)   A(\( - 3 + 3\lambda \), \( - 4 + 2\lambda \), \(6 - 2\lambda \))     A1

on \({l_2}\)   \({l_2}:r = \left( {\begin{array}{*{20}{c}}
  4 \\
  { - 7} \\
  3
\end{array}} \right) + \mu \left( {\begin{array}{*{20}{c}}
  { - 3} \\
  4 \\
  { - 1}
\end{array}} \right)\)     (M
1)

\( \Rightarrow \) B(\(4 - 3\mu \), \( - 7 + 4\mu \), \( - 3 - \mu \))     A1

\(\overrightarrow {{\text{BA}}}  = {\boldsymbol{a}} - {\boldsymbol{b}} = \left( {\begin{array}{*{20}{c}}
  {3\lambda  + 3\mu  - 7} \\
  {2\lambda  - 4\mu  + 3} \\
  { - 2\lambda  + \mu  + 9}
\end{array}} \right)\)     (M1)A1

EITHER

\({\text{BA}} \bot {l_1} \Rightarrow {\text{BA}} \cdot \left( {\begin{array}{*{20}{c}}
  3 \\
  2 \\
  { - 2}
\end{array}} \right) = 0 \Rightarrow 3\left( {3\lambda  + 3\mu  - 7} \right) + 2\left( {2\lambda  - 4\mu  + 3} \right) - 2\left( { - 2\lambda  + \mu  + 9} \right) = 0\)    
M1

\( \Rightarrow 17\lambda  - \mu  = 33\)     A1

\({\text{BA}} \bot {l_2} \Rightarrow {\text{BA}} \cdot \left( {\begin{array}{*{20}{c}}
  { - 3} \\
  4 \\
  { - 1}
\end{array}} \right) = 0 \Rightarrow  - 3\left( {3\lambda  + 3\mu  - 7} \right) + 4\left( {2\lambda  - 4\mu  + 3} \right) - \left( { - 2\lambda  + \mu  + 9} \right) = 0\)    
M1

\( \Rightarrow \lambda  - 26\mu  = - 24\)     A1

solving both equations above simultaneously gives
\(\lambda  = 2\); \(\mu  = 1 \Rightarrow \) A(3, 0, 2), B(1, –3, –4)     A1A1A1A1

OR

\(\left| {\begin{array}{*{20}{c}}
  {\boldsymbol{i}}&{\boldsymbol{j}}&{\boldsymbol{k}} \\
  3&2&{ - 2} \\
  { - 3}&4&{ - 1}
\end{array}} \right| = 6{\boldsymbol{i}} + 9{\boldsymbol{j}} + 18{\boldsymbol{k}}\)   
M1A1

so \(\overrightarrow {{\text{AB}}}  = p\left( {\begin{array}{*{20}{c}}
  2 \\
  3 \\
  6
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
  {3\lambda  + 3\mu  - 7} \\
  {2\lambda  - 4\mu  + 3} \\
  { - 2\lambda  + \mu  + 9}
\end{array}} \right)\)    
M1A1

\({3\lambda  + 3\mu  - 2p = 7}\)
\({2\lambda  - 4\mu  - 3p = - 3}\)
\({ - 2\lambda  + \mu  - 6p = - 9}\)

\(\lambda  = 2\), \(\mu  = 1\), \(p = 1\)     A1A1

A(\( - 3 + 6\), \( - 4 + 4\), \(6 - 4\)) \(=\) (\(3\), \(0\), \(2\))     A1

B(\(4 - 3\), \( - 7 + 4\), \( - 3 - 1\)) \(=\) (\(1\), \( - 3\), \( - 4\))     A1

[13 marks]

 

(b)     \({\text{AB}} = \left( {\begin{array}{*{20}{c}}
  1 \\
  { - 3} \\
  { - 4}
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
  3 \\
  0 \\
  2
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
  { - 2} \\
  { - 3} \\
  { - 6}
\end{array}} \right)\)    
(A1)

\(\left| {{\text{AB}}} \right| = \sqrt {{{\left( { - 2} \right)}^2} + {{\left( { - 3} \right)}^2} + {{\left( { - 6} \right)}^2}}  = \sqrt {49}  = 7\)     M1A1

[3 marks]

 

(c)     from (b) \(2{\boldsymbol{i}} + 3{\boldsymbol{j}} + 6{\boldsymbol{k}}\) is normal to both lines

\({l_1}\) goes through (–3, –4, 6) \( \Rightarrow \left( {\begin{array}{*{20}{c}}
  { - 3} \\
  { - 4} \\
  6
\end{array}} \right) \cdot \left( {\begin{array}{*{20}{c}}
  2 \\
  3 \\
  6
\end{array}} \right) = 18\)    
M1A1

hence, the Cartesian equation of the plane through \({l_1}\) , but not \({l_2}\) , is \(2x + 3y + 6z = 18\)     A1

[3 marks]

 

Total [19 marks]

Examiners report

There were a lot of arithmetic errors in the treatment of this question, even though it was apparent that many students did understand the methods involved. In (a) many students failed to realise that \(\overrightarrow {{\text{AB}}} \) should be a multiple of the cross product of the two direction vectors, rather than the cross product itself, and many students failed to give the final answer as coordinates.

Syllabus sections

Topic 4 - Core: Vectors » 4.3 » Vector equation of a line in two and three dimensions: \(r = a + \lambda b\) .
Show 27 related questions

View options