User interface language: English | Español

Date November 2015 Marks available 9 Reference code 15N.1.hl.TZ0.13
Level HL only Paper 1 Time zone TZ0
Command term Find, Hence, and Show that Question number 13 Adapted from N/A

Question

Consider the triangle ABCABC. The points PPQQ and RR are the midpoints of the line segments [ABAB], [BCBC] and [ACAC] respectively.

Let OA=aOA=a, OB=bOB=b and OC=cOC=c.

Find BRBR in terms of aa, bb and cc.

[2]
a.

(i)     Find a vector equation of the line that passes through BB and RR in terms of aa, bb and cc and a parameter λλ.

(ii)     Find a vector equation of the line that passes through AA and QQ in terms of aa, bb and cc and a parameter μμ.

(iii)     Hence show that OG=13(a+b+c)OG=13(a+b+c) given that GG is the point where [BRBR] and [AQAQ] intersect.

[9]
b.

Show that the line segment [CPCP] also includes the point GG.

[3]
c.

The coordinates of the points AABB and CC are (1, 3, 1)(1, 3, 1), (3, 7, 5)(3, 7, 5) and (2, 2, 1)(2, 2, 1) respectively.

A point XX is such that [GXGX] is perpendicular to the plane ABCABC.

Given that the tetrahedron ABCXABCX has volume 12 units312 units3, find possible coordinates

of XX.

[9]
d.

Markscheme

BR=BA+AR(=BA+12AC)BR=BA+AR(=BA+12AC)     (M1)

=(ab)+12(ca)=(ab)+12(ca)

=12ab+12c=12ab+12c     A1

[2 marks]

a.

(i)     rBR=b+λ(12ab+12c)(=λ2a+(1λ)b+λ2c)rBR=b+λ(12ab+12c)(=λ2a+(1λ)b+λ2c)     A1A1

 

Note:     Award A1A0 if the r=r= is omitted in an otherwise correct expression/equation.

Do not penalise such an omission more than once.

 

(ii)     AQ=a+12b+12cAQ=a+12b+12c     (A1)

rAQ=a+μ(a+12b+12c)(=(1μ)a+μ2b+μ2c)rAQ=a+μ(a+12b+12c)(=(1μ)a+μ2b+μ2c)     A1

 

Note:     Accept the use of the same parameter in (i) and (ii).

 

(iii)     when AQAQ and BPBP intersect we will have rBR=rAQrBR=rAQ     (M1)

 

Note:     If the same parameters are used for both equations, award at most M1M1A0A0M1.

 

λ2a+(1λ)b+λ2c=(1μ)a+μ2b+μ2cλ2a+(1λ)b+λ2c=(1μ)a+μ2b+μ2c

attempt to equate the coefficients of the vectors aa, bb and cc     M1

λ2=1μ1λ=μ2λ2=μ2}λ2=1μ1λ=μ2λ2=μ2⎪ ⎪ ⎪⎪ ⎪ ⎪     (A1)

λ=23λ=23 or μ=23μ=23     A1

substituting parameters back into one of the equations     M1

OG=1223a+(123)b+1223c=13(a+b+c)OG=1223a+(123)b+1223c=13(a+b+c)     AG

 

Note:     Accept solution by verification.

[9 marks]

b.

CP=12a+12bcCP=12a+12bc     (M1)A1

so we have that rCP=c+β(12a+12bc)rCP=c+β(12a+12bc) and when β=23β=23 the line passes through

the point GG (ie, with position vector 13(a+b+c)13(a+b+c))     R1

hence [AQAQ], [BRBR] and [CPCP] all intersect in GG     AG

[3 marks]

c.

OG=13((131)+(375)+(221))=(241)OG=13131+375+221=241     A1

 

Note:     This independent mark for the vector may be awarded wherever the vector is calculated.

AB×AC=(246)×(110)=(666)AB×AC=246×110=666     M1A1

GX=α(111)GX=α111     (M1)

volume of Tetrahedron given by 13×Area ABC×GX13×Area ABC×GX

=13(12|AB×AC|)×GX=12=13(12AB×AC)×GX=12     (M1)(A1)

 

Note:     Accept alternative methods, for example the use of a scalar triple product.

 

=16(6)2+(6)2+(6)2×α2+α2+α2=12=16(6)2+(6)2+(6)2×α2+α2+α2=12     (A1)

=1663|α|3=12=1663|α|3=12

|α|=4|α|=4     A1

 

Note:     Condone absence of absolute value.

 

this gives us the position of XX as (241)±(444)241±444

X(6, 8, 3)X(6, 8, 3) or (2, 0, 5)(2, 0, 5)     A1

 

Note:     Award A1 for either result.

[9 marks]

Total [23 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.

Syllabus sections

Topic 4 - Core: Vectors » 4.3 » Vector equation of a line in two and three dimensions: r=a+λbr=a+λb .
Show 27 related questions

View options