User interface language: English | Español

Date November 2014 Marks available 4 Reference code 14N.2.hl.TZ0.5
Level HL only Paper 2 Time zone TZ0
Command term Find Question number 5 Adapted from N/A

Question

The lines \({l_1}\) and \({l_2}\) are defined as

     \({l_1}:\frac{{x - 1}}{3} = \frac{{y - 5}}{2} = \frac{{z - 12}}{{ - 2}}\)

     \({l_2}:\frac{{x - 1}}{8} = \frac{{y - 5}}{{11}} = \frac{{z - 12}}{6}\).

The plane \(\pi \) contains both \({l_1}\) and \({l_2}\).

Find the Cartesian equation of \(\pi \).

[4]
a.

The line \({l_3}\) passing through the point \((4,{\text{ }}0,{\text{ }}8)\) is perpendicular to \(\pi \).

Find the coordinates of the point where \({l_3}\) meets \(\pi \).

[4]
b.

Markscheme

attempting to find a normal to \(\pi {\text{ }}eg{\text{ }}\left( {\begin{array}{*{20}{c}} 3 \\ 2 \\ { - 2} \end{array}} \right) \times \left( {\begin{array}{*{20}{c}} 8 \\ {11} \\ 6 \end{array}} \right)\)     (M1)

\(\left( {\begin{array}{*{20}{c}} 3 \\ 2 \\ { - 2} \end{array}} \right) \times \left( {\begin{array}{*{20}{c}} 8 \\ {11} \\ 6 \end{array}} \right) = 17\left( {\begin{array}{*{20}{c}} 2 \\ { - 2} \\ 1 \end{array}} \right)\)     (A1)

\({{r}} \bullet \left( {\begin{array}{*{20}{c}} 2 \\ { - 2} \\ 1 \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 1 \\ 5 \\ {12} \end{array}} \right) \bullet \left( {\begin{array}{*{20}{c}} 2 \\ { - 2} \\ 1 \end{array}} \right)\)     M1

\(2x - 2y + z = 4\) (or equivalent)     A1

[4 marks]

a.

\({l_3}:{{r}} = \left( {\begin{array}{*{20}{c}} 4 \\ 0 \\ 8 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} 2 \\ { - 2} \\ 1 \end{array}} \right),\;\;\;t \in \mathbb{R}\)     (A1)

attempting to solve \(\left( {\begin{array}{*{20}{c}} {4 + 2t} \\ { - 2t} \\ {8 + t} \end{array}} \right) \bullet \left( {\begin{array}{*{20}{c}} 2 \\ { - 2} \\ 1 \end{array}} \right) = 4\;\;\;{\text{for }}t\;\;\;ie{\text{ }}9t + 16 = 4\;\;\;{\text{for }}t\)     M1

\(t =  - \frac{4}{3}\)     A1

\(\left( {\frac{4}{3},{\text{ }}\frac{8}{3},{\text{ }}\frac{{20}}{3}} \right)\)     A1

[4 marks]

Total [8 marks]

b.

Examiners report

Part (a) was reasonably well done. Some candidates made numerical errors when attempting to find a normal to \(\pi \).

a.

In part (b), a number of candidates were awarded follow through marks from numerical errors committed in part (a).

b.

Syllabus sections

Topic 4 - Core: Vectors » 4.3 » Vector equation of a line in two and three dimensions: \(r = a + \lambda b\) .
Show 27 related questions

View options