Date | November 2013 | Marks available | 7 | Reference code | 13N.2.hl.TZ0.9 |
Level | HL only | Paper | 2 | Time zone | TZ0 |
Command term | Determine and Find | Question number | 9 | Adapted from | N/A |
Question
A line \({L_1}\) has equation r = \(\left( \begin{array}{c} - 5\\ - 3\\2\end{array} \right) + \lambda \left( \begin{array}{c} - 1\\2\\2\end{array} \right)\).
A line \({L_2}\) passing through the origin intersects \({L_1}\) and is perpendicular to \({L_1}\).
(a) Find a vector equation of \({L_2}\).
(b) Determine the shortest distance from the origin to \({L_1}\).
Markscheme
(a) METHOD 1
for P on \({L_1},{\text{ }}\overrightarrow {{\text{OP}}} = \) \(\left( \begin{array}{c} - 5 - \lambda \\ - 3 + 2\lambda \\2 + 2\lambda \end{array} \right)\)
require \(\left( \begin{array}{c} - 5 - \lambda \\ - 3 + 2\lambda \\2 + 2\lambda \end{array} \right) \bullet \left( \begin{array}{c} - 1\\2\\2\end{array} \right) = 0\) M1
\(5 + \lambda - 6 + 4\lambda + 4 + 4\lambda = 0\) (or equivalent) A1
\(\lambda = - \frac{1}{3}\) A1
\(\therefore \overrightarrow {{\rm{OP}}} = \left( \begin{array}{c} - \frac{{14}}{3}\\ - \frac{{11}}{3}\\\frac{4}{3}\end{array} \right)\) A1
\({L_2}:\boldsymbol{r} = \mu \left( \begin{array}{c} - 14\\ - 11\\4\end{array} \right)\) A1
Note: Do not award the final A1 if \(\boldsymbol{r} =\) is not seen.
[5 marks]
METHOD 2
Calculating either \(\left| {\overrightarrow {{\text{OP}}} } \right|\) or \({\left| {\overrightarrow {{\text{OP}}} } \right|^2}\) eg
\(\left| {\overrightarrow {{\text{OP}}} } \right| = \sqrt {{{( - 5 - \lambda )}^2} + {{( - 3 + 2\lambda )}^2} + {{(2 + 2\lambda )}^2}} \) A1
\( = \sqrt {9{\lambda ^2} + 6\lambda + 38} \)
Solving either \(\frac{{\text{d}}}{{{\text{d}}\lambda }}\left( {\left| {\overrightarrow {{\text{OP}}} } \right|} \right) = 0\) or \(\frac{{\text{d}}}{{{\text{d}}\lambda }}\left( {{{\left| {\overrightarrow {{\text{OP}}} } \right|}^2}} \right) = 0\) for \(\lambda \). M1
\(\lambda = - \frac{1}{3}\) A1
\(\overrightarrow {{\rm{OP}}} = \left( \begin{array}{c} - \frac{{14}}{3}\\ - \frac{{11}}{3}\\\frac{4}{3}\end{array} \right)\) A1
\({L_2}:\boldsymbol{r} = \mu \left( \begin{array}{c} - 14\\ - 11\\4\end{array} \right)\) A1
Note: Do not award the final A1 if \(\boldsymbol{r} =\) is not seen.
[5 marks]
(b) METHOD 1
\(\left| {\overrightarrow {{\text{OP}}} } \right| = \sqrt {{{\left( { - \frac{{14}}{3}} \right)}^2} + {{\left( { - \frac{{11}}{3}} \right)}^2} + {{\left( {\frac{4}{3}} \right)}^2}} \) (M1)
\( = 6.08{\text{ }}\left( { = \sqrt {37} } \right)\) A1
METHOD 2
shortest distance = \(\frac{{\left| {\left( \begin{array}{c} - 1\\2\\2\end{array} \right) \times \left( \begin{array}{c} - 5\\ - 3\\2\end{array} \right)} \right|}}{{\left| {\left( \begin{array}{c} - 1\\2\\2\end{array} \right)} \right|}}\) (M1)
\( = \frac{{\left| {10i + 8j + 13k} \right|}}{{\sqrt {1 + 4 + 4} }}\)
\( = 6.08{\text{ }}\left( { = \sqrt {37} } \right)\) A1
[2 marks]
Total [7 marks]
Examiners report
Part (a) was not well done. Most candidates recognised the need to calculate a scalar product. Some candidates made careless sign or arithmetic errors when solving for \(\lambda \). A few candidates neglected to express their final answer in the form ‘r =’.
Candidates who were successful in answering part (a) generally answered part (b) correctly. The large majority of successful candidates calculated \(\left| {\overrightarrow {{\text{OP}}} } \right|\).