Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date November 2013 Marks available 7 Reference code 13N.2.hl.TZ0.9
Level HL only Paper 2 Time zone TZ0
Command term Determine and Find Question number 9 Adapted from N/A

Question

A line L1 has equation r = (532)+λ(122).

A line L2 passing through the origin intersects L1 and is perpendicular to L1.

(a)     Find a vector equation of L2.

(b)     Determine the shortest distance from the origin to L1.

Markscheme

(a)     METHOD 1

for P on L1, OP= (5λ3+2λ2+2λ)

require (5λ3+2λ2+2λ)(122)=0     M1

5+λ6+4λ+4+4λ=0 (or equivalent)     A1

λ=13     A1

    A1

{L_2}:\boldsymbol{r} = \mu \left( \begin{array}{c} - 14\\ - 11\\4\end{array} \right)     A1

 

Note:     Do not award the final A1 if \boldsymbol{r} = is not seen.

 

[5 marks]

METHOD 2

Calculating either \left| {\overrightarrow {{\text{OP}}} } \right| or {\left| {\overrightarrow {{\text{OP}}} } \right|^2} eg

\left| {\overrightarrow {{\text{OP}}} } \right| = \sqrt {{{( - 5 - \lambda )}^2} + {{( - 3 + 2\lambda )}^2} + {{(2 + 2\lambda )}^2}}     A1

= \sqrt {9{\lambda ^2} + 6\lambda  + 38}

Solving either \frac{{\text{d}}}{{{\text{d}}\lambda }}\left( {\left| {\overrightarrow {{\text{OP}}} } \right|} \right) = 0 or \frac{{\text{d}}}{{{\text{d}}\lambda }}\left( {{{\left| {\overrightarrow {{\text{OP}}} } \right|}^2}} \right) = 0 for \lambda .     M1

\lambda  =  - \frac{1}{3}     A1

\overrightarrow {{\rm{OP}}}  = \left( \begin{array}{c} - \frac{{14}}{3}\\ - \frac{{11}}{3}\\\frac{4}{3}\end{array} \right)     A1

{L_2}:\boldsymbol{r} = \mu \left( \begin{array}{c} - 14\\ - 11\\4\end{array} \right)      A1

 

Note:     Do not award the final A1 if \boldsymbol{r} = is not seen.

 

[5 marks]

 

(b)     METHOD 1

\left| {\overrightarrow {{\text{OP}}} } \right| = \sqrt {{{\left( { - \frac{{14}}{3}} \right)}^2} + {{\left( { - \frac{{11}}{3}} \right)}^2} + {{\left( {\frac{4}{3}} \right)}^2}}     (M1)

= 6.08{\text{ }}\left( { = \sqrt {37} } \right)     A1

METHOD 2

shortest distance = \frac{{\left| {\left( \begin{array}{c} - 1\\2\\2\end{array} \right) \times \left( \begin{array}{c} - 5\\ - 3\\2\end{array} \right)} \right|}}{{\left| {\left( \begin{array}{c} - 1\\2\\2\end{array} \right)} \right|}}     (M1)

= \frac{{\left| {10i + 8j + 13k} \right|}}{{\sqrt {1 + 4 + 4} }}

= 6.08{\text{ }}\left( { = \sqrt {37} } \right)     A1

[2 marks]

 

Total [7 marks]

Examiners report

Part (a) was not well done. Most candidates recognised the need to calculate a scalar product. Some candidates made careless sign or arithmetic errors when solving for \lambda . A few candidates neglected to express their final answer in the form ‘r  =’.

Candidates who were successful in answering part (a) generally answered part (b) correctly. The large majority of successful candidates calculated \left| {\overrightarrow {{\text{OP}}} } \right|.

Syllabus sections

Topic 4 - Core: Vectors » 4.3 » Vector equation of a line in two and three dimensions: r = a + \lambda b .
Show 27 related questions

View options