Date | November 2013 | Marks available | 7 | Reference code | 13N.2.hl.TZ0.9 |
Level | HL only | Paper | 2 | Time zone | TZ0 |
Command term | Determine and Find | Question number | 9 | Adapted from | N/A |
Question
A line L1 has equation r = (−5−32)+λ(−122).
A line L2 passing through the origin intersects L1 and is perpendicular to L1.
(a) Find a vector equation of L2.
(b) Determine the shortest distance from the origin to L1.
Markscheme
(a) METHOD 1
for P on L1, →OP= (−5−λ−3+2λ2+2λ)
require (−5−λ−3+2λ2+2λ)∙(−122)=0 M1
5+λ−6+4λ+4+4λ=0 (or equivalent) A1
λ=−13 A1
∴ A1
{L_2}:\boldsymbol{r} = \mu \left( \begin{array}{c} - 14\\ - 11\\4\end{array} \right) A1
Note: Do not award the final A1 if \boldsymbol{r} = is not seen.
[5 marks]
METHOD 2
Calculating either \left| {\overrightarrow {{\text{OP}}} } \right| or {\left| {\overrightarrow {{\text{OP}}} } \right|^2} eg
\left| {\overrightarrow {{\text{OP}}} } \right| = \sqrt {{{( - 5 - \lambda )}^2} + {{( - 3 + 2\lambda )}^2} + {{(2 + 2\lambda )}^2}} A1
= \sqrt {9{\lambda ^2} + 6\lambda + 38}
Solving either \frac{{\text{d}}}{{{\text{d}}\lambda }}\left( {\left| {\overrightarrow {{\text{OP}}} } \right|} \right) = 0 or \frac{{\text{d}}}{{{\text{d}}\lambda }}\left( {{{\left| {\overrightarrow {{\text{OP}}} } \right|}^2}} \right) = 0 for \lambda . M1
\lambda = - \frac{1}{3} A1
\overrightarrow {{\rm{OP}}} = \left( \begin{array}{c} - \frac{{14}}{3}\\ - \frac{{11}}{3}\\\frac{4}{3}\end{array} \right) A1
{L_2}:\boldsymbol{r} = \mu \left( \begin{array}{c} - 14\\ - 11\\4\end{array} \right) A1
Note: Do not award the final A1 if \boldsymbol{r} = is not seen.
[5 marks]
(b) METHOD 1
\left| {\overrightarrow {{\text{OP}}} } \right| = \sqrt {{{\left( { - \frac{{14}}{3}} \right)}^2} + {{\left( { - \frac{{11}}{3}} \right)}^2} + {{\left( {\frac{4}{3}} \right)}^2}} (M1)
= 6.08{\text{ }}\left( { = \sqrt {37} } \right) A1
METHOD 2
shortest distance = \frac{{\left| {\left( \begin{array}{c} - 1\\2\\2\end{array} \right) \times \left( \begin{array}{c} - 5\\ - 3\\2\end{array} \right)} \right|}}{{\left| {\left( \begin{array}{c} - 1\\2\\2\end{array} \right)} \right|}} (M1)
= \frac{{\left| {10i + 8j + 13k} \right|}}{{\sqrt {1 + 4 + 4} }}
= 6.08{\text{ }}\left( { = \sqrt {37} } \right) A1
[2 marks]
Total [7 marks]
Examiners report
Part (a) was not well done. Most candidates recognised the need to calculate a scalar product. Some candidates made careless sign or arithmetic errors when solving for \lambda . A few candidates neglected to express their final answer in the form ‘r =’.
Candidates who were successful in answering part (a) generally answered part (b) correctly. The large majority of successful candidates calculated \left| {\overrightarrow {{\text{OP}}} } \right|.