Date | May 2015 | Marks available | 4 | Reference code | 15M.2.hl.TZ2.13 |
Level | HL only | Paper | 2 | Time zone | TZ2 |
Command term | Show that | Question number | 13 | Adapted from | N/A |
Question
The equations of the lines \({L_1}\) and \({L_2}\) are
\({L_1}:{r_1} = \left( \begin{array}{l}
1\\
2\\
2
\end{array} \right) + \lambda \left( \begin{array}{l}
- 1\\
1\\
2
\end{array} \right)\)
\({L_2}:{r_2} = \left( \begin{array}{l}
1\\
2\\
4
\end{array} \right) + \mu \left( \begin{array}{l}
2\\
1\\
6
\end{array} \right)\).
Show that the lines \({L_1}\) and \({L_2}\) are skew.
Find the acute angle between the lines \({L_1}\) and \({L_2}\).
(i) Find a vector perpendicular to both lines.
(ii) Hence determine an equation of the line \({L_3}\) that is perpendicular to both \({L_1}\) and \({L_2}\) and intersects both lines.
Markscheme
\({L_1}\) and \({L_2}\) are not parallel, since \(\left( \begin{array}{l}
- 1\\
1\\
2
\end{array} \right) \ne k\left( \begin{array}{l}
2\\
1\\
6
\end{array} \right)\) R1
if they meet, then \(1 - \lambda = 1 + 2\mu \) and \(2 + \lambda = 2 + \mu \) M1
solving simultaneously \( \Rightarrow \lambda = \mu = 0\) A1
\(2 + 2\lambda = 4 + 6\mu \Rightarrow 2 \ne 4\) contradiction, R1
so lines are skew AG
Note: Do not award the second R1 if their values of parameters are incorrect.
[4 marks]
\(\left( \begin{array}{l}
- 1\\
1\\
2
\end{array} \right) \bullet \left( \begin{array}{l}
2\\
1\\
6
\end{array} \right)( = 11) = \sqrt 6 \sqrt {41} \cos \theta \) M1A1
\(\cos \theta = \frac{{11}}{{\sqrt {246} }}\) (A1)
\(\theta = 45.5^\circ \;\;\;(0.794{\text{ radians}})\) A1
[4 marks]
(i) \(\left( {\begin{array}{*{20}{c}}
{ - 1} \\
1 \\
2
\end{array}} \right) \times \left( {\begin{array}{*{20}{c}}
2 \\
1 \\
6
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{6 - 2} \\
{4 + 6} \\
{ - 1 - 2}
\end{array}} \right)\) (M1)
\( = \left( {\begin{array}{*{20}{c}}
4 \\
{10} \\
{ - 3}
\end{array}} \right) = 4{\mathbf{i}} + 10{\mathbf{j}} - 3{\mathbf{k}}\) A1
(ii) METHOD 1
let P be the intersection of \({L_1}\) and \({L_3}\)
let Q be the intersection of \({L_2}\) and \({L_3}\)
\(\overrightarrow {{\text{OP}}} = \left( {\begin{array}{*{20}{c}}
{1 - \lambda } \\
{2 + \lambda } \\
{2 + 2\lambda }
\end{array}} \right)\overrightarrow {{\text{OQ}}} = \left( {\begin{array}{*{20}{c}}
{1 + 2\mu } \\
{2 + \mu } \\
{4 + 6\mu }
\end{array}} \right)\) M1
therefore \(\overrightarrow {{\text{PQ}}} = \overrightarrow {{\text{OQ}}} - \overrightarrow {{\text{OP}}} = \left( {\begin{array}{*{20}{c}}
{2\mu + \lambda } \\
{\mu - \lambda } \\
{2 + 6\mu - 2\lambda }
\end{array}} \right)\) M1A1
\(\left( {\begin{array}{*{20}{c}}
{2\mu + \lambda } \\
{\mu - \lambda } \\
{2 + 6\mu - 2\lambda }
\end{array}} \right) = t\left( {\begin{array}{*{20}{c}}
4 \\
{10} \\
{ - 3}
\end{array}} \right)\) M1
\(2\mu + \lambda - 4t = 0\)
\(\mu - \lambda - 10t = 0\)
\(6\mu - 2\lambda + 3t = - 2\)
solving simultaneously (M1)
\(\lambda = \frac{{32}}{{125}}\;\;\;(0.256),{\text{ }}\mu = - \frac{{28}}{{125}}\;\;\;( - 0.224)\) A1
Note: Award A1 for either correct \(\lambda \) or \(\mu \).
EITHER
therefore \(\overrightarrow {{\text{OP}}} = \left( {\begin{array}{*{20}{c}}
{1 - \lambda } \\
{2 + \lambda } \\
{2 + 2\lambda }
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{\frac{{93}}{{125}}} \\
{\frac{{282}}{{125}}} \\
{\frac{{314}}{{125}}}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{0.744} \\
{2.256} \\
{2.512}
\end{array}} \right)\)A1
therefore \({L_3}:{r_3} = \left( {\begin{array}{*{20}{c}}
{0.744} \\
{2.256} \\
{2.512}
\end{array}} \right) + \alpha \left( {\begin{array}{*{20}{c}}
4 \\
{10} \\
{ - 3}
\end{array}} \right)\) A1
OR
therefore \(\overrightarrow {{\text{OQ}}} = \left( {\begin{array}{*{20}{c}}
{1 + 2\mu } \\
{2 + \mu } \\
{4 + 6\mu }
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{\frac{{69}}{{125}}} \\
{\frac{{222}}{{125}}} \\
{\frac{{332}}{{125}}}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{0.552} \\
{1.776} \\
{2.656}
\end{array}} \right)\) A1
therefore \({L_3}:{r_3} = \left( {\begin{array}{*{20}{c}}
{0.552} \\
{1.776} \\
{2.656}
\end{array}} \right) + \alpha \left( {\begin{array}{*{20}{c}}
4 \\
{10} \\
{ - 3}
\end{array}} \right)\) A1
Note: Allow position vector(s) to be expressed in decimal or fractional form.
METHOD 2
\({L_3}:{r_3} = \left( {\begin{array}{*{20}{c}}
a \\
b \\
c
\end{array}} \right) + t\left( {\begin{array}{*{20}{c}}
4 \\
{10} \\
{ - 3}
\end{array}} \right)\)
forming two equations as intersections with \({L_1}\) and \({L_2}\)
\(\left( {\begin{array}{*{20}{c}}
a \\
b \\
c
\end{array}} \right) + {t_1}\left( {\begin{array}{*{20}{c}}
4 \\
{10} \\
{ - 3}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1 \\
2 \\
2
\end{array}} \right) + \lambda \left( {\begin{array}{*{20}{c}}
{ - 1} \\
1 \\
2
\end{array}} \right)\)
\(\left( {\begin{array}{*{20}{c}}
a \\
b \\
c
\end{array}} \right) + {t_2}\left( {\begin{array}{*{20}{c}}
4 \\
{10} \\
{ - 3}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1 \\
2 \\
4
\end{array}} \right) + \mu \left( {\begin{array}{*{20}{c}}
2 \\
1 \\
6
\end{array}} \right)\) M1A1A1
Note: Only award M1A1A1 if two different parameters \({t_1},{\text{ }}{t_2}\) used.
attempting to solve simultaneously M1
\(\lambda = \frac{{32}}{{125}}\;\;\;(0.256),{\text{ }}\mu = - \frac{{28}}{{125}}\;\;\;( - 0.224)\) A1
Note: Award A1 for either correct \(\lambda \) or \(\mu \).
EITHER
\(\left( {\begin{array}{*{20}{c}}
a \\
b \\
c
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{0.552} \\
{1.776} \\
{2.656}
\end{array}} \right)\) A1
therefore \({L_3}:{r_3} = \left( {\begin{array}{*{20}{c}}
{0.552} \\
{1.776} \\
{2.656}
\end{array}} \right) + t\left( {\begin{array}{*{20}{c}}
4 \\
{10} \\
{ - 3}
\end{array}} \right)\) A1A1
OR
\(\left( {\begin{array}{*{20}{c}}
a \\
b \\
c
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{0.744} \\
{2.256} \\
{2.512}
\end{array}} \right)\) A1
therefore \({L_3}:{r_3} = \left( {\begin{array}{*{20}{c}}
{0.744} \\
{2.256} \\
{2.512}
\end{array}} \right) + t\left( {\begin{array}{*{20}{c}}
4 \\
{10} \\
{ - 3}
\end{array}} \right)\) A1A1
Note: Allow position vector(s) to be expressed in decimal or fractional form.
10 marks
Total [18 marks]