Processing math: 100%

User interface language: English | Español

Date May 2015 Marks available 4 Reference code 15M.2.hl.TZ2.13
Level HL only Paper 2 Time zone TZ2
Command term Show that Question number 13 Adapted from N/A

Question

The equations of the lines L1 and L2 are

L1:r1=(122)+λ(112)

 

L2:r2=(124)+μ(216).

 

 

Show that the lines L1 and L2 are skew.

[4]
a.

Find the acute angle between the lines L1 and L2.

[4]
b.

(i)     Find a vector perpendicular to both lines.

(ii)     Hence determine an equation of the line L3 that is perpendicular to both L1 and L2 and intersects both lines.

[10]
c.

Markscheme

L1 and L2 are not parallel, since (112)k(216)     R1

if they meet, then 1λ=1+2μ and 2+λ=2+μ     M1

solving simultaneously λ=μ=0     A1

2+2λ=4+6μ24 contradiction,     R1

so lines are skew     AG

 

Note:     Do not award the second R1 if their values of parameters are incorrect.

[4 marks]

a.

(112)(216)(=11)=641cosθ     M1A1

cosθ=11246     (A1)

θ=45.5(0.794 radians)     A1

[4 marks]

b.

(i)     (112)×(216)=(624+612)     (M1)

=(4103)=4i+10j3k     A1

(ii)     METHOD 1

let P be the intersection of L1 and L3

let Q be the intersection of L2 and L3

OP=(1λ2+λ2+2λ)OQ=(1+2μ2+μ4+6μ)     M1

therefore PQ=OQOP=(2μ+λμλ2+6μ2λ)     M1A1

(2μ+λμλ2+6μ2λ)=t(4103)     M1

2μ+λ4t=0
μλ10t=0
6μ2λ+3t=2

solving simultaneously     (M1)

λ=32125(0.256), μ=28125(0.224)     A1

 

Note:     Award A1 for either correct λ or μ.

 

EITHER

therefore OP=(1λ2+λ2+2λ)=(93125282125314125)=(0.7442.2562.512)A1

therefore L3:r3=(0.7442.2562.512)+α(4103)     A1

OR

therefore OQ=(1+2μ2+μ4+6μ)=(69125222125332125)=(0.5521.7762.656)     A1

therefore L3:r3=(0.5521.7762.656)+α(4103)     A1

 

Note:     Allow position vector(s) to be expressed in decimal or fractional form.

METHOD 2

L3:r3=(abc)+t(4103)

forming two equations as intersections with L1 and L2

(abc)+t1(4103)=(122)+λ(112)
(abc)+t2(4103)=(124)+μ(216)     M1A1A1

 

Note:     Only award M1A1A1 if two different parameters t1, t2 used.

 

attempting to solve simultaneously     M1

λ=32125(0.256), μ=28125(0.224)     A1

 

Note:     Award A1 for either correct λ or μ.
 

EITHER

(abc)=(0.5521.7762.656)     A1

therefore L3:r3=(0.5521.7762.656)+t(4103)     A1A1

OR

(abc)=(0.7442.2562.512)     A1

therefore L3:r3=(0.7442.2562.512)+t(4103)     A1A1
 

Note:     Allow position vector(s) to be expressed in decimal or fractional form.

10 marks

Total [18 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 4 - Core: Vectors » 4.3 » Vector equation of a line in two and three dimensions: r=a+λb .
Show 27 related questions

View options