User interface language: English | Español

Date May 2018 Marks available 1 Reference code 18M.2.hl.TZ0.4
Level HL only Paper 2 Time zone TZ0
Command term Explain Question number 4 Adapted from N/A

Question

Draw slope fields for the following cases for \( - 2 \leqslant x \leqslant 2,\,\, - 2 \leqslant y \leqslant 2\)

Explain what isoclines tell you about the slope field in the following case:

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 2\).

[2]
a.i.

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = x + 1\).

[2]
a.ii.

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = x - 1\).

[2]
a.iii.

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \) constant.

[1]
b.i.

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = f\left( x \right)\).

[1]
b.ii.

The slope field for the differential equation \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = x + y\) for \( - 4 \leqslant x \leqslant 4,\,\, - 4 \leqslant y \leqslant 4\) is shown in the following diagram.

Explain why the slope field indicates that the only linear solution is \(y =  - x - 1\).

[2]
c.

Given that all the isoclines from a slope field of a differential equation are straight lines through the origin, find two examples of the differential equation.

[4]
d.

Markscheme

     A2

[2 marks]

a.i.

   A2

[2 marks]

a.ii.

  A2

[2 marks]

a.iii.

the slope is the same everywhere     A1

[1 mark]

b.i.

all points that have the same \(x\) coordinate have the same slope    A1

[1 mark]

b.ii.

this is where a straight line appears on the slope field        A1

There is no other straight line, all the other solutions are curves        A1

[2 marks]

c.

given \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = f\left( {x,\,y} \right)\), the isoclines are \(f\left( {x,\,y} \right) = k\)      (M1)

here the isoclines are \(y = kx\) (or \(x = ky\))     (A1)

any two differential equations of the correct form, for example

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{ky}}{x},\,\,\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{kx}}{y},\,\,\frac{{{\text{d}}y}}{{{\text{d}}x}} = {\text{sin}}\left( {\frac{y}{x}} \right),\,\,\frac{{{\text{d}}y}}{{{\text{d}}x}} = {\text{sin}}\left( {\frac{x}{y}} \right)\)      A1A1

[4 marks]

d.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
a.iii.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
c.
[N/A]
d.

Syllabus sections

Topic 5 - Calculus » 5.5 » First-order differential equations.
Show 27 related questions

View options