User interface language: English | Español

Date May 2018 Marks available 4 Reference code 18M.2.hl.TZ0.2
Level HL only Paper 2 Time zone TZ0
Command term Show that Question number 2 Adapted from N/A

Question

It is given that \(\left( {5x + y} \right)\frac{{{\text{d}}y}}{{{\text{d}}x}} = \left( {x + 5y} \right)\) and that when \(x = 0,\,\,y = 2\).

Use Euler’s method with step length 0.1 to find an approximate value of \(y\) when \(x = 0.4\).

[5]
a.

Show that \(\left( {5x + y} \right)\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 1 - {\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)^2}\).

[3]
b.i.

Show that \(\left( {5x + y} \right)\frac{{{{\text{d}}^3}y}}{{{\text{d}}{x^3}}} =  - 5\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} - 3\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)\left( {\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}}} \right)\).

[4]
b.ii.

Find the Maclaurin expansion for \(y\) up to and including the term in \({{x^3}}\).

[5]
b.iii.

Markscheme

Euler’s method with step length \(h = 0.1\) to find \(y\) when \(x = 0.4\)

Note: Accept 3 significant figures in the table.

first line of table       (M1)(A1)

line 2        (A1)

line 3        (A1)

hence \(y\) = 3.65       A1

Note: Accept any answer that rounds to 3.65.

[5 marks]

a.

\(\left( {5x + y} \right)\frac{{{\text{d}}y}}{{{\text{d}}x}} = x + 5y\)

\(\left( {5 + \frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)\frac{{{\text{d}}y}}{{{\text{d}}x}} + \left( {5x + y} \right)\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 1 + 5\frac{{{\text{d}}y}}{{{\text{d}}x}}\)     M1A1A1

Note: Award M1 for a valid attempt to differentiate, A1 for LHS, A1 for RHS.

\(\left( {5x + y} \right)\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 1 + 5\frac{{{\text{d}}y}}{{{\text{d}}x}} - 5\frac{{{\text{d}}y}}{{{\text{d}}x}} - {\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)^2}\)

\(\left( {5x + y} \right)\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 1 - {\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)^2}\)      AG

[3 marks]

b.i.

\(\left( {5x + y} \right)\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}}1 - {\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)^2}\)

\(\left( {5 + \frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} + \left( {5x + y} \right)\frac{{{{\text{d}}^3}y}}{{{\text{d}}{x^3}}} =  - 2\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)\left( {\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}}} \right)\)     M1A1A1A1

\(\left( {5x + y} \right)\frac{{{{\text{d}}^3}y}}{{{\text{d}}{x^3}}} =  - 2\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)\left( {\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}}} \right) - 5\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} - \left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)\left( {\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}}} \right)\)

\(\left( {5x + y} \right)\frac{{{{\text{d}}^3}y}}{{{\text{d}}{x^3}}} =  - 5\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} - 3\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)\left( {\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}}} \right)\)     AG

[4 marks]

b.ii.

when \(x = 0\,\,\,y = 2\)

when \(x = 0\,\,\frac{{{\text{d}}y}}{{{\text{d}}x}} = 5\)      A1

when \(x = 0\,\,\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} =  - 12\)      A1

when \(x = 0\,\,\frac{{{{\text{d}}^3}y}}{{{\text{d}}{x^3}}} = 120\)      A1

Note: Allow follow through from incorrect values of derivatives.

\(y = 2 + 5x - 6{x^2} + 20{x^3}\)      M1A1

[5 marks]

b.iii.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
b.iii.

Syllabus sections

Topic 5 - Calculus » 5.5 » First-order differential equations.
Show 27 related questions

View options