Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2018 Marks available 4 Reference code 18M.2.hl.TZ0.2
Level HL only Paper 2 Time zone TZ0
Command term Show that Question number 2 Adapted from N/A

Question

It is given that (5x+y)dydx=(x+5y) and that when x=0,y=2.

Use Euler’s method with step length 0.1 to find an approximate value of y when x=0.4.

[5]
a.

Show that (5x+y)d2ydx2=1(dydx)2.

[3]
b.i.

Show that (5x+y)d3ydx3=5d2ydx23(dydx)(d2ydx2).

[4]
b.ii.

Find the Maclaurin expansion for y up to and including the term in x3.

[5]
b.iii.

Markscheme

Euler’s method with step length h=0.1 to find y when x=0.4

Note: Accept 3 significant figures in the table.

first line of table       (M1)(A1)

line 2        (A1)

line 3        (A1)

hence y = 3.65       A1

Note: Accept any answer that rounds to 3.65.

[5 marks]

a.

(5x+y)dydx=x+5y

(5+dydx)dydx+(5x+y)d2ydx2=1+5dydx     M1A1A1

Note: Award M1 for a valid attempt to differentiate, A1 for LHS, A1 for RHS.

(5x+y)d2ydx2=1+5dydx5dydx(dydx)2

(5x+y)d2ydx2=1(dydx)2      AG

[3 marks]

b.i.

(5x+y)d2ydx21(dydx)2

(5+dydx)d2ydx2+(5x+y)d3ydx3=2(dydx)(d2ydx2)     M1A1A1A1

(5x+y)d3ydx3=2(dydx)(d2ydx2)5d2ydx2(dydx)(d2ydx2)

(5x+y)d3ydx3=5d2ydx23(dydx)(d2ydx2)     AG

[4 marks]

b.ii.

when x=0y=2

when x=0dydx=5      A1

when x=0d2ydx2=12      A1

when x=0d3ydx3=120      A1

Note: Allow follow through from incorrect values of derivatives.

y=2+5x6x2+20x3      M1A1

[5 marks]

b.iii.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
b.iii.

Syllabus sections

Topic 5 - Calculus » 5.5 » First-order differential equations.
Show 27 related questions

View options