Date | May 2018 | Marks available | 4 | Reference code | 18M.2.hl.TZ0.2 |
Level | HL only | Paper | 2 | Time zone | TZ0 |
Command term | Show that | Question number | 2 | Adapted from | N/A |
Question
It is given that (5x+y)dydx=(x+5y) and that when x=0,y=2.
Use Euler’s method with step length 0.1 to find an approximate value of y when x=0.4.
Show that (5x+y)d2ydx2=1−(dydx)2.
Show that (5x+y)d3ydx3=−5d2ydx2−3(dydx)(d2ydx2).
Find the Maclaurin expansion for y up to and including the term in x3.
Markscheme
Euler’s method with step length h=0.1 to find y when x=0.4
Note: Accept 3 significant figures in the table.
first line of table (M1)(A1)
line 2 (A1)
line 3 (A1)
hence y = 3.65 A1
Note: Accept any answer that rounds to 3.65.
[5 marks]
(5x+y)dydx=x+5y
(5+dydx)dydx+(5x+y)d2ydx2=1+5dydx M1A1A1
Note: Award M1 for a valid attempt to differentiate, A1 for LHS, A1 for RHS.
(5x+y)d2ydx2=1+5dydx−5dydx−(dydx)2
(5x+y)d2ydx2=1−(dydx)2 AG
[3 marks]
(5x+y)d2ydx21−(dydx)2
(5+dydx)d2ydx2+(5x+y)d3ydx3=−2(dydx)(d2ydx2) M1A1A1A1
(5x+y)d3ydx3=−2(dydx)(d2ydx2)−5d2ydx2−(dydx)(d2ydx2)
(5x+y)d3ydx3=−5d2ydx2−3(dydx)(d2ydx2) AG
[4 marks]
when x=0y=2
when x=0dydx=5 A1
when x=0d2ydx2=−12 A1
when x=0d3ydx3=120 A1
Note: Allow follow through from incorrect values of derivatives.
y=2+5x−6x2+20x3 M1A1
[5 marks]