Date | May 2018 | Marks available | 4 | Reference code | 18M.2.hl.TZ0.2 |
Level | HL only | Paper | 2 | Time zone | TZ0 |
Command term | Show that | Question number | 2 | Adapted from | N/A |
Question
It is given that \(\left( {5x + y} \right)\frac{{{\text{d}}y}}{{{\text{d}}x}} = \left( {x + 5y} \right)\) and that when \(x = 0,\,\,y = 2\).
Use Euler’s method with step length 0.1 to find an approximate value of \(y\) when \(x = 0.4\).
Show that \(\left( {5x + y} \right)\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 1 - {\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)^2}\).
Show that \(\left( {5x + y} \right)\frac{{{{\text{d}}^3}y}}{{{\text{d}}{x^3}}} = - 5\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} - 3\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)\left( {\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}}} \right)\).
Find the Maclaurin expansion for \(y\) up to and including the term in \({{x^3}}\).
Markscheme
Euler’s method with step length \(h = 0.1\) to find \(y\) when \(x = 0.4\)
Note: Accept 3 significant figures in the table.
first line of table (M1)(A1)
line 2 (A1)
line 3 (A1)
hence \(y\) = 3.65 A1
Note: Accept any answer that rounds to 3.65.
[5 marks]
\(\left( {5x + y} \right)\frac{{{\text{d}}y}}{{{\text{d}}x}} = x + 5y\)
\(\left( {5 + \frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)\frac{{{\text{d}}y}}{{{\text{d}}x}} + \left( {5x + y} \right)\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 1 + 5\frac{{{\text{d}}y}}{{{\text{d}}x}}\) M1A1A1
Note: Award M1 for a valid attempt to differentiate, A1 for LHS, A1 for RHS.
\(\left( {5x + y} \right)\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 1 + 5\frac{{{\text{d}}y}}{{{\text{d}}x}} - 5\frac{{{\text{d}}y}}{{{\text{d}}x}} - {\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)^2}\)
\(\left( {5x + y} \right)\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 1 - {\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)^2}\) AG
[3 marks]
\(\left( {5x + y} \right)\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}}1 - {\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)^2}\)
\(\left( {5 + \frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} + \left( {5x + y} \right)\frac{{{{\text{d}}^3}y}}{{{\text{d}}{x^3}}} = - 2\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)\left( {\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}}} \right)\) M1A1A1A1
\(\left( {5x + y} \right)\frac{{{{\text{d}}^3}y}}{{{\text{d}}{x^3}}} = - 2\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)\left( {\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}}} \right) - 5\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} - \left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)\left( {\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}}} \right)\)
\(\left( {5x + y} \right)\frac{{{{\text{d}}^3}y}}{{{\text{d}}{x^3}}} = - 5\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} - 3\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)\left( {\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}}} \right)\) AG
[4 marks]
when \(x = 0\,\,\,y = 2\)
when \(x = 0\,\,\frac{{{\text{d}}y}}{{{\text{d}}x}} = 5\) A1
when \(x = 0\,\,\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = - 12\) A1
when \(x = 0\,\,\frac{{{{\text{d}}^3}y}}{{{\text{d}}{x^3}}} = 120\) A1
Note: Allow follow through from incorrect values of derivatives.
\(y = 2 + 5x - 6{x^2} + 20{x^3}\) M1A1
[5 marks]