Loading [MathJax]/jax/output/CommonHTML/jax.js

User interface language: English | Español

Date May 2014 Marks available 7 Reference code 14M.1.hl.TZ0.2
Level HL only Paper 1 Time zone TZ0
Command term Find Question number 2 Adapted from N/A

Question

Consider the differential equation dydx=y3x3 for which y=1 when x=0. Use Euler’s method with a step length of 0.1 to find an approximation for the value of y when x=0.4.

Markscheme

use of yy+hdydx     (M1)

 

x y dy/dx hdy/dx  
0 1 1  0.1 (A1)
0.1 1.1 1.33 0.133 A1
0.2 1.233 1.866516337 0.1866516337  A1
0.3 1.419651634 2.834181181 0.283418118 A1
0.4 1.703069752     (A1)

 

Note: After the first line, award A1 for each subsequent y value, provided it is correct to 3sf.

 

approximate value of y(0.4)=1.70     A1

 

Note: Accept 1.7 or any answers that round to 1.70.

 

[7 marks]

Examiners report

[N/A]

Syllabus sections

Topic 5 - Calculus » 5.5 » First-order differential equations.

View options