User interface language: English | Español

Date May 2014 Marks available 7 Reference code 14M.1.hl.TZ0.2
Level HL only Paper 1 Time zone TZ0
Command term Find Question number 2 Adapted from N/A

Question

Consider the differential equation \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = {y^3} - {x^3}\) for which \(y = 1\) when \(x = 0\). Use Euler’s method with a step length of \(0.1\) to find an approximation for the value of \(y\) when \(x = 0.4\).

Markscheme

use of \(y \to y + h\frac{{{\text{d}}y}}{{{\text{d}}x}}\)     (M1)

 

\(x\) \(y\) \({\text{d}}y{\text{/d}}x\) \(h{\text{d}}y{\text{/d}}x\)  
0 1 1  0.1 (A1)
0.1 1.1 1.33 0.133 A1
0.2 1.233 1.866516337 0.1866516337  A1
0.3 1.419651634 2.834181181 0.283418118 A1
0.4 1.703069752     (A1)

 

Note: After the first line, award A1 for each subsequent \(y\) value, provided it is correct to 3sf.

 

approximate value of \(y(0.4) = 1.70\)     A1

 

Note: Accept \(1.7\) or any answers that round to \(1.70\).

 

[7 marks]

Examiners report

[N/A]

Syllabus sections

Topic 5 - Calculus » 5.5 » First-order differential equations.

View options