User interface language: English | Español

Date May 2008 Marks available 11 Reference code 08M.1.hl.TZ0.5
Level HL only Paper 1 Time zone TZ0
Command term Solve Question number 5 Adapted from N/A

Question

Solve the following differential equation\[(x + 1)(x + 2)\frac{{{\rm{d}}y}}{{{\rm{d}}x}} + y = x + 1\]giving your answer in the form \(y = f(x)\) .

Markscheme

Rewrite the equation in the form

\(\frac{{{\rm{d}}y}}{{{\rm{d}}x}} + \frac{y}{{(x + 1)(x + 2)}} = \frac{1}{{x + 2}}\)     M1

Integrating factor \( = \exp \left( {\int {\frac{{{\rm{d}}x}}{{(x + 1)(x + 2)}}} } \right)\)     A1

\( = \exp \left( {\int {\left( {\frac{1}{{x + 1}} - \frac{1}{{x + 2}}} \right){\rm{d}}x} } \right)\)     M1A1

\( = \exp \ln \left( {\frac{{x + 1}}{{x + 2}}} \right)\)     A1

\( = \frac{{x + 1}}{{x + 2}}\)     A1

Multiplying by the integrating factor,

\(\left( {\frac{{x + 1}}{{x + 2}}} \right)\frac{{{\rm{d}}y}}{{{\rm{d}}x}} + \frac{y}{{{{(x + 2)}^2}}} = \frac{{x + 1}}{{{{(x + 2)}^2}}}\)     M1

\( = \frac{{x + 2}}{{{{(x + 2)}^2}}} - \frac{1}{{{{(x + 2)}^2}}}\)     A1

Integrating,

\(\left( {\frac{{x + 1}}{{x + 2}}} \right)y = \ln (x + 2) + \frac{1}{{x + 2}} + C\)     A1A1

\(y = \left( {\frac{{x + 2}}{{x + 1}}} \right)\left\{ {\ln (x + 2) + \frac{1}{{x + 2}} + C} \right\}\)     A1

[11 marks]

Examiners report

[N/A]

Syllabus sections

Topic 5 - Calculus » 5.5 » First-order differential equations.

View options