Date | May 2008 | Marks available | 11 | Reference code | 08M.1.hl.TZ0.5 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Solve | Question number | 5 | Adapted from | N/A |
Question
Solve the following differential equation\[(x + 1)(x + 2)\frac{{{\rm{d}}y}}{{{\rm{d}}x}} + y = x + 1\]giving your answer in the form \(y = f(x)\) .
Markscheme
Rewrite the equation in the form
\(\frac{{{\rm{d}}y}}{{{\rm{d}}x}} + \frac{y}{{(x + 1)(x + 2)}} = \frac{1}{{x + 2}}\) M1
Integrating factor \( = \exp \left( {\int {\frac{{{\rm{d}}x}}{{(x + 1)(x + 2)}}} } \right)\) A1
\( = \exp \left( {\int {\left( {\frac{1}{{x + 1}} - \frac{1}{{x + 2}}} \right){\rm{d}}x} } \right)\) M1A1
\( = \exp \ln \left( {\frac{{x + 1}}{{x + 2}}} \right)\) A1
\( = \frac{{x + 1}}{{x + 2}}\) A1
Multiplying by the integrating factor,
\(\left( {\frac{{x + 1}}{{x + 2}}} \right)\frac{{{\rm{d}}y}}{{{\rm{d}}x}} + \frac{y}{{{{(x + 2)}^2}}} = \frac{{x + 1}}{{{{(x + 2)}^2}}}\) M1
\( = \frac{{x + 2}}{{{{(x + 2)}^2}}} - \frac{1}{{{{(x + 2)}^2}}}\) A1
Integrating,
\(\left( {\frac{{x + 1}}{{x + 2}}} \right)y = \ln (x + 2) + \frac{1}{{x + 2}} + C\) A1A1
\(y = \left( {\frac{{x + 2}}{{x + 1}}} \right)\left\{ {\ln (x + 2) + \frac{1}{{x + 2}} + C} \right\}\) A1
[11 marks]