Loading [MathJax]/jax/output/CommonHTML/jax.js

User interface language: English | Español

Date May 2008 Marks available 11 Reference code 08M.1.hl.TZ0.5
Level HL only Paper 1 Time zone TZ0
Command term Solve Question number 5 Adapted from N/A

Question

Solve the following differential equation(x+1)(x+2)dydx+y=x+1giving your answer in the form y=f(x) .

Markscheme

Rewrite the equation in the form

dydx+y(x+1)(x+2)=1x+2     M1

Integrating factor =exp(dx(x+1)(x+2))     A1

=exp((1x+11x+2)dx)     M1A1

=expln(x+1x+2)     A1

=x+1x+2     A1

Multiplying by the integrating factor,

(x+1x+2)dydx+y(x+2)2=x+1(x+2)2     M1

=x+2(x+2)21(x+2)2     A1

Integrating,

(x+1x+2)y=ln(x+2)+1x+2+C     A1A1

y=(x+2x+1){ln(x+2)+1x+2+C}     A1

[11 marks]

Examiners report

[N/A]

Syllabus sections

Topic 5 - Calculus » 5.5 » First-order differential equations.

View options