User interface language: English | Español

Date May 2018 Marks available 3 Reference code 18M.1.hl.TZ0.11
Level HL only Paper 1 Time zone TZ0
Command term Show that Question number 11 Adapted from N/A

Question

Given that \(y\) is a function of \(x\), the function \(z\) is given by \(z = \frac{{y - x}}{{y + x}}\), where \(x \in \mathbb{R},\,\,x \ne 3,\,\,y + x \ne 0\).

Show that \(\frac{{{\text{d}}z}}{{{\text{d}}x}} = \frac{2}{{{{\left( {y + x} \right)}^2}}}\left( {x\frac{{{\text{d}}y}}{{{\text{d}}x}} - y} \right)\).

[3]
a.

Show that the differential equation \(f\left( x \right)\left( {x\frac{{{\text{d}}y}}{{{\text{d}}x}} - y} \right) = {y^2} - {x^2}\) can be written as \(f\left( x \right)\frac{{{\text{d}}z}}{{{\text{d}}x}} = 2z\).

[2]
b.

Hence show that the solution to the differential equation \(\left( {x - 3} \right)\left( {x\frac{{{\text{d}}y}}{{{\text{d}}x}} - y} \right) = {y^2} - {x^2}\) given that \(x = 4\) when \(y = 5\) is \(\frac{{y - x}}{{y + x}} = {\left( {\frac{{x - 3}}{3}} \right)^2}\).

[7]
c.

Markscheme

\(z = \frac{{y - x}}{{y + x}}\)

\( \Rightarrow \frac{{{\text{d}}z}}{{{\text{d}}x}} = \frac{{\left( {y + x} \right)\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}} - 1} \right) - \left( {y - x} \right)\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}} + 1} \right)}}{{{{\left( {y + x} \right)}^2}}}\)      M1A1

\( \Rightarrow \frac{{{\text{d}}z}}{{{\text{d}}x}} = \frac{{y\frac{{{\text{d}}y}}{{{\text{d}}x}} + x\frac{{{\text{d}}y}}{{{\text{d}}x}} - y - x - y\frac{{{\text{d}}y}}{{{\text{d}}x}} + x\frac{{{\text{d}}y}}{{{\text{d}}x}} - y + x}}{{{{\left( {y + x} \right)}^2}}}\)     A1

\( \Rightarrow \frac{{{\text{d}}z}}{{{\text{d}}x}} = \frac{2}{{{{\left( {y + x} \right)}^2}}}\left( {x\frac{{{\text{d}}y}}{{{\text{d}}x}} - y} \right)\)     AG

[3 marks]

a.

\(f\left( x \right)\left( {\frac{{{{\left( {y + x} \right)}^2}}}{2}} \right)\frac{{{\text{d}}z}}{{{\text{d}}x}} = {y^2} - {x^2}\)      (M1)

\(f\left( x \right)\frac{{{\text{d}}z}}{{{\text{d}}x}} = 2\frac{{\left( {y - x} \right)\left( {y + x} \right)}}{{{{\left( {y + x} \right)}^2}}}\)      A1

\(f\left( x \right)\frac{{{\text{d}}z}}{{{\text{d}}x}} = 2\frac{{\left( {y - x} \right)}}{{\left( {y + x} \right)}} = 2z\)      AG

[2 marks]

b.

METHOD 1

\(f\left( x \right)\frac{{{\text{d}}z}}{{{\text{d}}x}} = 2z\)

\(\frac{1}{z}\frac{{{\text{d}}z}}{{{\text{d}}x}} = \frac{2}{{f\left( x \right)}}\)

\(\frac{1}{z}\frac{{{\text{d}}z}}{{{\text{d}}x}} = \frac{2}{{x - 3}}\)     M1A1

EITHER

\( \Rightarrow {\text{ln}}\,z = 2\,{\text{ln}}\left( {x - 3} \right) + c\)     A1

when \(y = 5,\,x = 4 \Rightarrow z = \frac{1}{9}\)     M1

\( \Rightarrow c = {\text{ln}}\frac{1}{9}\)      A1

\( \Rightarrow {\text{ln}}\,z = 2\,{\text{ln}}\left( {x - 3} \right) + {\text{ln}}\frac{1}{9}\)

\( \Rightarrow {\text{ln}}\,z = {\text{ln}}{\left( {x - 3} \right)^2} - {\text{ln}}\,9\)     A1

\( \Rightarrow {\text{ln}}\,z = {\text{ln}}{\left( {\frac{{x - 3}}{3}} \right)^2}\)     A1

\( \Rightarrow z = {\left( {\frac{{x - 3}}{3}} \right)^2}\)

OR

\( \Rightarrow {\text{ln}}\,z = 2\,{\text{ln}}\left( {x - 3} \right) + {\text{ln}}\,c\)    A1

\(z = c{\left( {x - 3} \right)^2}\)     M1A1

when \(y = 5,\,x = 4 \Rightarrow z = \frac{1}{9}\)     M1

\( \Rightarrow c = \frac{1}{9}\)      A1

THEN

\( \Rightarrow \frac{{y - x}}{{y + x}} = {\left( {\frac{{x - 3}}{3}} \right)^2}\)      AG

 

METHOD 2

\(f\left( x \right)\frac{{{\text{d}}z}}{{{\text{d}}x}} = 2z\)

\(f\left( x \right)\frac{{{\text{d}}z}}{{{\text{d}}x}} - 2z = 0\)

\(\frac{{{\text{d}}z}}{{{\text{d}}x}} - \frac{{2z}}{{x - 3}} = 0\)     M1

integrating factor is \({e^{\int {\frac{{ - 2}}{{x - 3}}} {\text{d}}x}}\)     A1

\({e^{\int {\frac{{ - 2}}{{x - 3}}} {\text{d}}x}} = {e^{ - 2\,{\text{ln}}\left( {x - 3} \right)}}\)

\( = \frac{1}{{{{\left( {x - 3} \right)}^2}}}\)      A1

hence \(\frac{{\text{d}}}{{{\text{d}}x}}\left[ {\frac{z}{{{{\left( {x - 3} \right)}^2}}}} \right] = 0\)     M1

\(z = A{\left( {x - 3} \right)^2}\)     A1

when when \(y = 5,\,x = 4 \Rightarrow z = \frac{1}{9}\)     M1

\( \Rightarrow A = \frac{1}{9}\)     A1

\( \Rightarrow \frac{{y - x}}{{y + x}} = {\left( {\frac{{x - 3}}{3}} \right)^2}\)      AG

[7 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 5 - Calculus » 5.5 » First-order differential equations.
Show 27 related questions

View options