Date | May 2018 | Marks available | 3 | Reference code | 18M.1.hl.TZ0.11 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Show that | Question number | 11 | Adapted from | N/A |
Question
Given that y is a function of x, the function z is given by z=y−xy+x, where x∈R,x≠3,y+x≠0.
Show that dzdx=2(y+x)2(xdydx−y).
Show that the differential equation f(x)(xdydx−y)=y2−x2 can be written as f(x)dzdx=2z.
Hence show that the solution to the differential equation (x−3)(xdydx−y)=y2−x2 given that x=4 when y=5 is y−xy+x=(x−33)2.
Markscheme
z=y−xy+x
⇒dzdx=(y+x)(dydx−1)−(y−x)(dydx+1)(y+x)2 M1A1
⇒dzdx=ydydx+xdydx−y−x−ydydx+xdydx−y+x(y+x)2 A1
⇒dzdx=2(y+x)2(xdydx−y) AG
[3 marks]
f(x)((y+x)22)dzdx=y2−x2 (M1)
f(x)dzdx=2(y−x)(y+x)(y+x)2 A1
f(x)dzdx=2(y−x)(y+x)=2z AG
[2 marks]
METHOD 1
f(x)dzdx=2z
1zdzdx=2f(x)
1zdzdx=2x−3 M1A1
EITHER
⇒lnz=2ln(x−3)+c A1
when y=5,x=4⇒z=19 M1
⇒c=ln19 A1
⇒lnz=2ln(x−3)+ln19
⇒lnz=ln(x−3)2−ln9 A1
⇒lnz=ln(x−33)2 A1
⇒z=(x−33)2
OR
⇒lnz=2ln(x−3)+lnc A1
z=c(x−3)2 M1A1
when y=5,x=4⇒z=19 M1
⇒c=19 A1
THEN
⇒y−xy+x=(x−33)2 AG
METHOD 2
f(x)dzdx=2z
f(x)dzdx−2z=0
dzdx−2zx−3=0 M1
integrating factor is e∫−2x−3dx A1
e∫−2x−3dx=e−2ln(x−3)
=1(x−3)2 A1
hence ddx[z(x−3)2]=0 M1
z=A(x−3)2 A1
when when y=5,x=4⇒z=19 M1
⇒A=19 A1
⇒y−xy+x=(x−33)2 AG
[7 marks]