Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2018 Marks available 3 Reference code 18M.1.hl.TZ0.11
Level HL only Paper 1 Time zone TZ0
Command term Show that Question number 11 Adapted from N/A

Question

Given that y is a function of x, the function z is given by z=yxy+x, where xR,x3,y+x0.

Show that dzdx=2(y+x)2(xdydxy).

[3]
a.

Show that the differential equation f(x)(xdydxy)=y2x2 can be written as f(x)dzdx=2z.

[2]
b.

Hence show that the solution to the differential equation (x3)(xdydxy)=y2x2 given that x=4 when y=5 is yxy+x=(x33)2.

[7]
c.

Markscheme

z=yxy+x

dzdx=(y+x)(dydx1)(yx)(dydx+1)(y+x)2      M1A1

dzdx=ydydx+xdydxyxydydx+xdydxy+x(y+x)2     A1

dzdx=2(y+x)2(xdydxy)     AG

[3 marks]

a.

f(x)((y+x)22)dzdx=y2x2      (M1)

f(x)dzdx=2(yx)(y+x)(y+x)2      A1

f(x)dzdx=2(yx)(y+x)=2z      AG

[2 marks]

b.

METHOD 1

f(x)dzdx=2z

1zdzdx=2f(x)

1zdzdx=2x3     M1A1

EITHER

lnz=2ln(x3)+c     A1

when y=5,x=4z=19     M1

c=ln19      A1

lnz=2ln(x3)+ln19

lnz=ln(x3)2ln9     A1

lnz=ln(x33)2     A1

z=(x33)2

OR

lnz=2ln(x3)+lnc    A1

z=c(x3)2     M1A1

when y=5,x=4z=19     M1

c=19      A1

THEN

yxy+x=(x33)2      AG

 

METHOD 2

f(x)dzdx=2z

f(x)dzdx2z=0

dzdx2zx3=0     M1

integrating factor is e2x3dx     A1

e2x3dx=e2ln(x3)

=1(x3)2      A1

hence ddx[z(x3)2]=0     M1

z=A(x3)2     A1

when when y=5,x=4z=19     M1

A=19     A1

yxy+x=(x33)2      AG

[7 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 5 - Calculus » 5.5 » First-order differential equations.
Show 27 related questions

View options