Date | May 2007 | Marks available | 9 | Reference code | 07M.1.hl.TZ0.5 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Solve | Question number | 5 | Adapted from | N/A |
Question
Solve the differential equation \(x\frac{{{\rm{d}}y}}{{{\rm{d}}x}} + 2y = \sqrt {1 + {x^2}} \)
given that \(y = 1\) when \(x = \sqrt 3 \) .
Markscheme
Rewrite the equation in the form
\(\frac{{{\rm{d}}y}}{{{\rm{d}}x}} + \frac{2}{x}y = \frac{{\sqrt {1 + {x^2}} }}{x}\) M1A1
Integrating factor \( = {{\rm{e}}^{\int {\left( {\frac{2}{x}} \right)} {\rm{d}}x}}\) M1
\( = {{\rm{e}}^{2\ln x}}\) (A1)
\( = {x^2}\) A1
The equation becomes
\(\frac{{\rm{d}}}{{{\rm{d}}y}}(y{x^2}) = x\sqrt {1 + {x^2}} \) M1
\(y{x^2} = \frac{1}{3}{(1 + {x^2})^{\frac{3}{2}}} + C\) A1
\(3 = \frac{1}{3} \times 8 + C \to C = \frac{1}{3}\) M1A1
\(\left[ {{\text{giving }}y{x^2} = \frac{1}{3}\left( {{{\left( {1 + {x^2}} \right)}^{\frac{3}{2}}} + 1} \right)} \right]\)
[9 marks]