User interface language: English | Español

Date May 2018 Marks available 2 Reference code 18M.1.sl.TZ1.12
Level SL only Paper 1 Time zone TZ1
Command term Find Question number 12 Adapted from N/A

Question

Consider the quadratic function \(f\left( x \right) = a{x^2} + bx + 22\).

The equation of the line of symmetry of the graph \(y = f\left( x \right){\text{ is }}x = 1.75\).

The graph intersects the x-axis at the point (−2 , 0).

Using only this information, write down an equation in terms of a and b.

[1]
a.

Using this information, write down a second equation in terms of a and b.

[1]
b.

Hence find the value of a and of b.

[2]
c.

The graph intersects the x-axis at a second point, P.

Find the x-coordinate of P.

[2]
d.

Markscheme

\(1.75 = \frac{{ - b}}{{2a}}\) (or equivalent)      (A1) (C1)

Note: Award (A1) for \(f\left( x \right) = {\left( {1.75} \right)^2}a + 1.75b\) or for \(y = {\left( {1.75} \right)^2}a + 1.75b + 22\) or for \(f\left( {1.75} \right) = {\left( {1.75} \right)^2}a + 1.75b + 22\).

[1 mark]

a.

\({\left( { - 2} \right)^2} \times a + \left( { - 2} \right) \times b + 22 = 0\) (or equivalent)      (A1) (C1)

Note: Award (A1) for \({\left( { - 2} \right)^2} \times a + \left( { - 2} \right) \times b + 22 = 0\) seen.

Award (A0) for \(y = {\left( { - 2} \right)^2} \times a + \left( { - 2} \right) \times b + 22\).

[1 mark]

b.

a = −2, b = 7     (A1)(ft)(A1)(ft) (C2)

Note: Follow through from parts (a) and (b).
Accept answers(s) embedded as a coordinate pair.

[2 marks]

c.

−2x2 + 7x + 22 = 0     (M1)

Note: Award (M1) for correct substitution of a and b into equation and setting to zero. Follow through from part (c).

(=) 5.5     (A1)(ft) (C2)

Note: Follow through from parts (a) and (b).

OR

x-coordinate = 1.75 + (1.75 − (−2))     (M1)

Note: Award (M1) for correct use of axis of symmetry and given intercept.

(=) 5.5     (A1) (C2)

[2 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.

Syllabus sections

Topic 6 - Mathematical models » 6.3
Show 102 related questions

View options