DP Mathematics SL Questionbank
Perpendicular vectors; parallel vectors.
Description
[N/A]Directly related questions
- 12N.1.sl.TZ0.9a: Show that...
- 12N.1.sl.TZ0.9b: Let C and D be points such that ABCD is a rectangle. Given that...
- 12N.1.sl.TZ0.9c: Let C and D be points such that ABCD is a rectangle. Find the coordinates of point C.
- 12N.1.sl.TZ0.9d: Let C and D be points such that ABCD is a rectangle. Find the area of rectangle ABCD.
- 08M.2.sl.TZ1.7: Let \({\boldsymbol{v}} = 3{\boldsymbol{i}} + 4{\boldsymbol{j}} + {\boldsymbol{k}}\) and...
- 08M.1.sl.TZ2.8b: Show that \(k = 7\) .
- 10N.1.sl.TZ0.8a(i), (ii) and (iii): (i) Show that...
- 10N.1.sl.TZ0.8b(i) and (ii): The line (AC) has equation \({\boldsymbol{r}} = {\boldsymbol{u}} + s{\boldsymbol{v}}\) . (i) ...
- 10N.1.sl.TZ0.8d: The lines (AC) and (BD) intersect at the point \({\text{P}}(3{\text{, }}k)\) . Hence find the...
- 10N.1.sl.TZ0.8c: The lines (AC) and (BD) intersect at the point \({\text{P}}(3{\text{, }}k)\) . Show that...
- 10M.1.sl.TZ1.10b: A third line \({L_3}\) is perpendicular to \({L_1}\) and is represented by...
- 10M.1.sl.TZ2.2b: Find a unit vector in the direction of \(\overrightarrow {{\rm{AB}}} \) .
- 10M.1.sl.TZ2.2c: Show that \(\overrightarrow {{\rm{AB}}} \) is perpendicular to \(\overrightarrow {{\rm{AC}}} \) .
- 10M.1.sl.TZ1.10a: Write down a vector equation for \({L_2}\) in the form...
- 10M.1.sl.TZ1.10c: The lines \({L_1}\) and \({L_3}\) intersect at the point A. Find the coordinates of A.
- 10M.1.sl.TZ1.10d(i) and (ii): The lines \({L_2}\)and \({L_3}\)intersect at point C where...
- 10M.1.sl.TZ2.2a: Find \(\overrightarrow {{\rm{BC}}} \) .
- 09N.1.sl.TZ0.2a: Let u \( = \left( {\begin{array}{*{20}{c}}2\\3\\{ - 1}\end{array}} \right)\) and w...
- SPNone.2.sl.TZ0.4c: Given that \({L_1}\) is perpendicular to \({L_3}\) , find the value of a .
- SPNone.2.sl.TZ0.4a: Write down the line that is parallel to \({L_4}\) .
- 11N.1.sl.TZ0.8a(i) and (ii): (i) Find \(\overrightarrow {{\rm{PQ}}} \) . (ii) Hence write down a vector equation for...
- 11N.1.sl.TZ0.8b(i) and (ii): (i) Find the value of p . (ii) Given that \({L_2}\) passes through...
- 11N.1.sl.TZ0.8c: The lines \({L_1}\) and \({L_2}\) intersect at the point A. Find the x-coordinate of A.
- 11M.1.sl.TZ1.9a(i) and (ii): (i) Write down \(\overrightarrow {{\rm{BA}}} \) . (ii) Find...
- 11M.1.sl.TZ1.9b(i) and (ii): (i) Find \(\cos {\rm{A}}\widehat {\rm{B}}{\rm{C}}\) . (ii) Hence, find...
- 11M.1.sl.TZ1.9c(i) and (ii): The point D is such that...
- 11M.1.sl.TZ2.3a: Find \(\overrightarrow {{\rm{BC}}} \) .
- 11M.1.sl.TZ2.3b: Show...
- 11M.1.sl.TZ2.3c: Show that vectors \(\overrightarrow {{\rm{BD}}} \) and \(\overrightarrow {{\rm{AC}}} \) are...
- 13M.1.sl.TZ1.8b: Given that \({L_1}\) is perpendicular to \({L_2}\) , show that \(p = - 6\) .
- 14M.2.sl.TZ1.4b: Given that \(u = \left( \begin{array}{c}3\\2\\1\end{array} \right)\) and...
- 14M.1.sl.TZ2.4a: Find the gradient of the line \(L\).
- 14M.1.sl.TZ2.9c: The position of Jack’s airplane \(s\) seconds after it takes off is given by r =...
- 18M.1.sl.TZ1.9d: Point D is also on L and has coordinates (8, 4, −9). Find the area of triangle OCD.
- 18M.1.sl.TZ1.9c.ii: Write down the value of angle OBA.
- 18M.1.sl.TZ1.9c.i: Find \(\mathop {{\text{OB}}}\limits^ \to \, \bullet \mathop {{\text{AB}}}\limits^ \to \).
- 18M.1.sl.TZ1.9b.ii: Point C (k , 12 , −k) is on L. Show that k = 14.
- 18M.1.sl.TZ1.9b.i: Find a vector equation for L.
- 18M.1.sl.TZ1.9a: Show...
- 13N.2.sl.TZ0.9b: Show that the lines are perpendicular.