Date | May 2018 | Marks available | 6 | Reference code | 18M.2.sl.TZ2.5 |
Level | SL only | Paper | 2 | Time zone | TZ2 |
Command term | Find | Question number | 5 | Adapted from | N/A |
Question
Consider the expansion of \({\left( {2x + \frac{k}{x}} \right)^9}\), where k > 0 . The coefficient of the term in x3 is equal to the coefficient of the term in x5. Find k.
Markscheme
valid approach to find one of the required terms (must have correct substitution for parameters but accept “r” or an incorrect value for r) (M1)
eg \(\left( \begin{gathered}
9 \hfill \\
r \hfill \\
\end{gathered} \right){\left( {2x} \right)^{9 - r}}{\left( {\frac{k}{x}} \right)^r},\,\,\left( \begin{gathered}
9 \hfill \\
6 \hfill \\
\end{gathered} \right){\left( {2x} \right)^6}{\left( {\frac{k}{x}} \right)^3},\,\,\left( \begin{gathered}
9 \hfill \\
0 \hfill \\
\end{gathered} \right){\left( {2x} \right)^0}{\left( {\frac{k}{x}} \right)^9} + \left( \begin{gathered}
9 \hfill \\
1 \hfill \\
\end{gathered} \right){\left( {2x} \right)^1}{\left( {\frac{k}{x}} \right)^8} + \)…, Pascal’s triangle to 9th row
Note: Award M0 if there is clear evidence of adding instead of multiplying.
identifying correct terms (must be clearly indicated if only seen in expansion) (A1)(A1)
eg for x3 term: r = 3, r = 6, 7th term, \(\left( \begin{gathered}
9 \hfill \\
6 \hfill \\
\end{gathered} \right),\,\,\left( \begin{gathered}
9 \hfill \\
3 \hfill \\
\end{gathered} \right),\,\,{\left( {2x} \right)^6}{\left( {\frac{k}{x}} \right)^3},\,\,5376{k^3}\)
for x5 term: r = 2, r = 7, 8th term, \(\left( \begin{gathered}
9 \hfill \\
7 \hfill \\
\end{gathered} \right),\,\,\left( \begin{gathered}
9 \hfill \\
2 \hfill \\
\end{gathered} \right),\,\,{\left( {2x} \right)^7}{\left( {\frac{k}{x}} \right)^2},\,\,4608{k^2}\)
correct equation (may include powers of x) A1
eg \(\left( \begin{gathered}
9 \hfill \\
3 \hfill \\
\end{gathered} \right){\left( {2x} \right)^6}{\left( {\frac{k}{x}} \right)^3} = \left( \begin{gathered}
9 \hfill \\
2 \hfill \\
\end{gathered} \right){\left( {2x} \right)^7}{\left( {\frac{k}{x}} \right)^2}\)
valid attempt to solve their equation in terms of k only (M1)
eg sketch, \(84 \times 64{k^3} - 36 \times 128{k^2} = 0,\,\,5376k - 4608 = 0,\,\,\left( \begin{gathered}
9 \hfill \\
3 \hfill \\
\end{gathered} \right){2^6}{k^3} = \left( \begin{gathered}
9 \hfill \\
2 \hfill \\
\end{gathered} \right){2^7}{k^2}\)
0.857142
\(k = \frac{{4608}}{{5376}}\left( { = \frac{6}{7}} \right)\) (exact), 0.857 A1N4
[6 marks]