User interface language: English | Español

Date May 2018 Marks available 6 Reference code 18M.2.sl.TZ2.5
Level SL only Paper 2 Time zone TZ2
Command term Find Question number 5 Adapted from N/A

Question

Consider the expansion of \({\left( {2x + \frac{k}{x}} \right)^9}\), where k > 0 . The coefficient of the term in x3 is equal to the coefficient of the term in  x5. Find k.

Markscheme

valid approach to find one of the required terms (must have correct substitution for parameters but accept “r” or an incorrect value for r)       (M1)
eg    \(\left( \begin{gathered}
9 \hfill \\
r \hfill \\
\end{gathered} \right){\left( {2x} \right)^{9 - r}}{\left( {\frac{k}{x}} \right)^r},\,\,\left( \begin{gathered}
9 \hfill \\
6 \hfill \\
\end{gathered} \right){\left( {2x} \right)^6}{\left( {\frac{k}{x}} \right)^3},\,\,\left( \begin{gathered}
9 \hfill \\
0 \hfill \\
\end{gathered} \right){\left( {2x} \right)^0}{\left( {\frac{k}{x}} \right)^9} + \left( \begin{gathered}
9 \hfill \\
1 \hfill \\
\end{gathered} \right){\left( {2x} \right)^1}{\left( {\frac{k}{x}} \right)^8} + \)…, Pascal’s triangle to 9th row

Note: Award M0 if there is clear evidence of adding instead of multiplying.

identifying correct terms (must be clearly indicated if only seen in expansion)      (A1)(A1)

eg  for x3 term: r = 3, r = 6, 7th term, \(\left( \begin{gathered}
9 \hfill \\
6 \hfill \\
\end{gathered} \right),\,\,\left( \begin{gathered}
9 \hfill \\
3 \hfill \\
\end{gathered} \right),\,\,{\left( {2x} \right)^6}{\left( {\frac{k}{x}} \right)^3},\,\,5376{k^3}\)

for x5 term: r = 2, r = 7, 8th term, \(\left( \begin{gathered}
9 \hfill \\
7 \hfill \\
\end{gathered} \right),\,\,\left( \begin{gathered}
9 \hfill \\
2 \hfill \\
\end{gathered} \right),\,\,{\left( {2x} \right)^7}{\left( {\frac{k}{x}} \right)^2},\,\,4608{k^2}\)

correct equation (may include powers of x)       A1
eg  \(\left( \begin{gathered}
9 \hfill \\
3 \hfill \\
\end{gathered} \right){\left( {2x} \right)^6}{\left( {\frac{k}{x}} \right)^3} = \left( \begin{gathered}
9 \hfill \\
2 \hfill \\
\end{gathered} \right){\left( {2x} \right)^7}{\left( {\frac{k}{x}} \right)^2}\)

valid attempt to solve their equation in terms of k only      (M1)
eg  sketch, \(84 \times 64{k^3} - 36 \times 128{k^2} = 0,\,\,5376k - 4608 = 0,\,\,\left( \begin{gathered}
9 \hfill \\
3 \hfill \\
\end{gathered} \right){2^6}{k^3} = \left( \begin{gathered}
9 \hfill \\
2 \hfill \\
\end{gathered} \right){2^7}{k^2}\)

0.857142

\(k = \frac{{4608}}{{5376}}\left( { = \frac{6}{7}} \right)\) (exact), 0.857     A1N4

[6 marks]

Examiners report

[N/A]

Syllabus sections

Topic 1 - Algebra » 1.3 » The binomial theorem: expansion of \({\left( {a + b} \right)^n}\), \(n \in \mathbb{N}\) .
Show 32 related questions

View options