Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date November 2015 Marks available 7 Reference code 15N.1.sl.TZ0.6
Level SL only Paper 1 Time zone TZ0
Command term Find Question number 6 Adapted from N/A

Question

In the expansion of (3x+1)n, the coefficient of the term in x2 is 135n, where nZ+. Find n.

Markscheme

Note:     Accept sloppy notation (such as missing brackets, or binomial coefficient which includes x2).

 

evidence of valid binomial expansion with binomial coefficients     (M1)

eg(nr)(3x)r(1)nr, (3x)n+n(3x)n1+(n2)(3x)n2+, (nr)(1)nr(3x)r

attempt to identify correct term     (M1)

eg(nn2), (3x)2, nr=2

setting correct coefficient or term equal to 135n (may be seen later)     A1

eg9(n2)=135n, (nn2)(3x)2=135n, 9n(n1)2=135nx2

correct working for binomial coefficient (using nCr formula)     (A1)

egn(n1)(n2)(n3)2×1×(n2)(n3)(n4), n(n1)2

EITHER

evidence of correct working (with linear equation in n)     (A1)

eg9(n1)2=135, 9(n1)2x2=135x2

correct simplification     (A1)

egn1=135×29, (n1)2=15

n=31     A1     N2

OR

evidence of correct working (with quadratic equation in n)     (A1)

eg9n2279n=0, n2n=30n, (9n29n)x2=270nx2

evidence of solving     (A1)

eg9n(n31)=0, 9n2=279n

n=31     A1     N2

 

Note:     Award A0 for additional answers.

 

[7 marks]

Examiners report

[N/A]

Syllabus sections

Topic 1 - Algebra » 1.3 » The binomial theorem: expansion of (a+b)n, nN .
Show 31 related questions

View options