Date | November 2015 | Marks available | 7 | Reference code | 15N.1.sl.TZ0.6 |
Level | SL only | Paper | 1 | Time zone | TZ0 |
Command term | Find | Question number | 6 | Adapted from | N/A |
Question
In the expansion of \({(3x + 1)^n}\), the coefficient of the term in \({x^2}\) is \(135n\), where \(n \in {\mathbb{Z}^ + }\). Find \(n\).
Markscheme
Note: Accept sloppy notation (such as missing brackets, or binomial coefficient which includes \({x^2}\)).
evidence of valid binomial expansion with binomial coefficients (M1)
eg\(\;\;\;\left( {\begin{array}{*{20}{c}} n \\ r \end{array}} \right){(3x)^r}{(1)^{n - r}},{\text{ }}{(3x)^n} + n{(3x)^{n - 1}} + \left( {\begin{array}{*{20}{c}} n \\ 2 \end{array}} \right){(3x)^{n - 2}} + \ldots ,{\text{ }}\left( {\begin{array}{*{20}{c}} n \\ r \end{array}} \right){(1)^{n - r}}{(3x)^r}\)
attempt to identify correct term (M1)
eg\(\;\;\;\left( {\begin{array}{*{20}{c}} n \\ {n - 2} \end{array}} \right),{\text{ }}{(3x)^2},{\text{ }}n - r = 2\)
setting correct coefficient or term equal to \(135n\) (may be seen later) A1
eg\(\;\;\;9\left( {\begin{array}{*{20}{c}} n \\ 2 \end{array}} \right) = 135n,{\text{ }}\left( {\begin{array}{*{20}{c}} n \\ {n - 2} \end{array}} \right){(3x)^2} = 135n,{\text{ }}\frac{{9n(n - 1)}}{2} = 135n{x^2}\)
correct working for binomial coefficient (using \(_n{C_r}\) formula) (A1)
eg\(\;\;\;\frac{{n(n - 1)(n - 2)(n - 3) \ldots }}{{2 \times 1 \times (n - 2)(n - 3)(n - 4) \ldots }},{\text{ }}\frac{{n(n - 1)}}{2}\)
EITHER
evidence of correct working (with linear equation in \(n\)) (A1)
eg\(\;\;\;\frac{{9(n - 1)}}{2} = 135,{\text{ }}\frac{{9(n - 1)}}{2}{x^2} = 135{x^2}\)
correct simplification (A1)
eg\(\;\;\;n - 1 = \frac{{135 \times 2}}{9},{\text{ }}\frac{{(n - 1)}}{2} = 15\)
\(n = 31\) A1 N2
OR
evidence of correct working (with quadratic equation in \(n\)) (A1)
eg\(\;\;\;9{n^2} - 279n = 0,{\text{ }}{n^2} - n = 30n,{\text{ (9}}{{\text{n}}^2} - 9n){x^2} = 270n{x^2}\)
evidence of solving (A1)
eg\(\;\;\;9n(n - 31) = 0,{\text{ }}9{n^2} = 279n\)
\(n = 31\) A1 N2
Note: Award A0 for additional answers.
[7 marks]