User interface language: English | Español

Date November 2015 Marks available 7 Reference code 15N.1.sl.TZ0.6
Level SL only Paper 1 Time zone TZ0
Command term Find Question number 6 Adapted from N/A

Question

In the expansion of \({(3x + 1)^n}\), the coefficient of the term in \({x^2}\) is \(135n\), where \(n \in {\mathbb{Z}^ + }\). Find \(n\).

Markscheme

Note:     Accept sloppy notation (such as missing brackets, or binomial coefficient which includes \({x^2}\)).

 

evidence of valid binomial expansion with binomial coefficients     (M1)

eg\(\;\;\;\left( {\begin{array}{*{20}{c}} n \\ r \end{array}} \right){(3x)^r}{(1)^{n - r}},{\text{ }}{(3x)^n} + n{(3x)^{n - 1}} + \left( {\begin{array}{*{20}{c}} n \\ 2 \end{array}} \right){(3x)^{n - 2}} +  \ldots ,{\text{ }}\left( {\begin{array}{*{20}{c}} n \\ r \end{array}} \right){(1)^{n - r}}{(3x)^r}\)

attempt to identify correct term     (M1)

eg\(\;\;\;\left( {\begin{array}{*{20}{c}} n \\ {n - 2} \end{array}} \right),{\text{ }}{(3x)^2},{\text{ }}n - r = 2\)

setting correct coefficient or term equal to \(135n\) (may be seen later)     A1

eg\(\;\;\;9\left( {\begin{array}{*{20}{c}} n \\ 2 \end{array}} \right) = 135n,{\text{ }}\left( {\begin{array}{*{20}{c}} n \\ {n - 2} \end{array}} \right){(3x)^2} = 135n,{\text{ }}\frac{{9n(n - 1)}}{2} = 135n{x^2}\)

correct working for binomial coefficient (using \(_n{C_r}\) formula)     (A1)

eg\(\;\;\;\frac{{n(n - 1)(n - 2)(n - 3) \ldots }}{{2 \times 1 \times (n - 2)(n - 3)(n - 4) \ldots }},{\text{ }}\frac{{n(n - 1)}}{2}\)

EITHER

evidence of correct working (with linear equation in \(n\))     (A1)

eg\(\;\;\;\frac{{9(n - 1)}}{2} = 135,{\text{ }}\frac{{9(n - 1)}}{2}{x^2} = 135{x^2}\)

correct simplification     (A1)

eg\(\;\;\;n - 1 = \frac{{135 \times 2}}{9},{\text{ }}\frac{{(n - 1)}}{2} = 15\)

\(n = 31\)     A1     N2

OR

evidence of correct working (with quadratic equation in \(n\))     (A1)

eg\(\;\;\;9{n^2} - 279n = 0,{\text{ }}{n^2} - n = 30n,{\text{ (9}}{{\text{n}}^2} - 9n){x^2} = 270n{x^2}\)

evidence of solving     (A1)

eg\(\;\;\;9n(n - 31) = 0,{\text{ }}9{n^2} = 279n\)

\(n = 31\)     A1     N2

 

Note:     Award A0 for additional answers.

 

[7 marks]

Examiners report

[N/A]

Syllabus sections

Topic 1 - Algebra » 1.3 » The binomial theorem: expansion of \({\left( {a + b} \right)^n}\), \(n \in \mathbb{N}\) .
Show 31 related questions

View options