User interface language: English | Español

Date May 2014 Marks available 7 Reference code 14M.2.sl.TZ2.7
Level SL only Paper 2 Time zone TZ2
Command term Find Question number 7 Adapted from N/A

Question

Consider the expansion of x2(3x2+kx)8x2(3x2+kx)8. The constant term is 16 12816 128.

Find kk.

Markscheme

valid approach     (M1)

eg     (8r)(3x2)8r(kx)r(8r)(3x2)8r(kx)r,

(3x2)8+(81)(3x2)7(kx)+(82)(3x2)6(kx)2+(3x2)8+(81)(3x2)7(kx)+(82)(3x2)6(kx)2+, Pascal’s triangle to 9th9th line

attempt to find value of r which gives term in x0x0     (M1)

eg     exponent in binomial must give x2, x2(x2)8r(kx)r=x0x2, x2(x2)8r(kx)r=x0

correct working     (A1)

eg     2(8r)r=2, 183r=0, 2r+(8+r)=22(8r)r=2, 183r=0, 2r+(8+r)=2

evidence of correct term     (A1)

eg     (82)(86)(3x2)2(kx)2, r=6, r=2(82)(86)(3x2)2(kx)2, r=6, r=2

equating their term and 16128 to solve for kk     M1

eg     x2(86)(3x2)2(kx)6=16128, k6=1612828(9)x2(86)(3x2)2(kx)6=16128, k6=1612828(9)

k=±2k=±2     A1A1     N2

 

Note: If no working shown, award N0 for k=2k=2.

 

Total [7 marks]

Examiners report

[N/A]

Syllabus sections

Topic 1 - Algebra » 1.3 » The binomial theorem: expansion of (a+b)n(a+b)n, nN .
Show 31 related questions

View options