Date | May 2014 | Marks available | 7 | Reference code | 14M.2.sl.TZ2.7 |
Level | SL only | Paper | 2 | Time zone | TZ2 |
Command term | Find | Question number | 7 | Adapted from | N/A |
Question
Consider the expansion of \({x^2}{\left( {3{x^2} + \frac{k}{x}} \right)^8}\). The constant term is \({\text{16 128}}\).
Find \(k\).
Markscheme
valid approach (M1)
eg \({\text{\(\left( \begin{array}{c}8\\r\end{array} \right)\)}}{\left( {3{x^2}} \right)^{8 - r}}{\left( {\frac{k}{x}} \right)^r}\),
\({\left( {3{x^2}} \right)^8} + {\text{\(\left( \begin{array}{c}8\\1\end{array} \right)\)}}{\left( {3{x^2}} \right)^7}\left( {\frac{k}{x}} \right) + {\text{\(\left( \begin{array}{c}8\\2\end{array} \right)\)}}{\left( {3{x^2}} \right)^6}{\left( {\frac{k}{x}} \right)^2} + \ldots \), Pascal’s triangle to \({9^{{\text{th}}}}\) line
attempt to find value of r which gives term in \({x^0}\) (M1)
eg exponent in binomial must give \({x^{ - 2}},{\text{ }}{x^2}{\left( {{x^2}} \right)^{8 - r}}{\left( {\frac{k}{x}} \right)^r} = {x^0}\)
correct working (A1)
eg \(2(8 - r) - r = - 2,{\text{ }}18 - 3r = 0,{\text{ }}2r + ( - 8 + r) = - 2\)
evidence of correct term (A1)
eg \({\text{\(\left( \begin{array}{c}8\\2\end{array} \right)\), \(\left( \begin{array}{c}8\\6\end{array} \right)\)}}{\left( {3{x^2}} \right)^2}{\left( {\frac{k}{x}} \right)^2},{\text{ }}r = 6,{\text{ }}r = 2\)
equating their term and 16128 to solve for \(k\) M1
eg \({x^2}{\text{\(\left( \begin{array}{c}8\\6\end{array} \right)\)}}{\left( {3{x^2}} \right)^2}{\left( {\frac{k}{x}} \right)^6} = 16128,{\text{ }}{k^6} = \frac{{16128}}{{28(9)}}\)
\(k = \pm 2\) A1A1 N2
Note: If no working shown, award N0 for \(k = 2\).
Total [7 marks]