User interface language: English | Español

Date May 2014 Marks available 4 Reference code 14M.2.sl.TZ1.2
Level SL only Paper 2 Time zone TZ1
Command term Find Question number 2 Adapted from N/A

Question

Consider the expansion of \({(x + 3)^{10}}\).

Write down the number of terms in this expansion.

[1]
a.

Find the term containing \({x^3}\).

[4]
b.

Markscheme

11 terms     A1     N1

[1 mark]

a.

evidence of binomial expansion     (M1)

eg     \(\left( \begin{array}{c}n\\r\end{array} \right)\) \({a^{n - r}}{b^r}\), attempt to expand

evidence of choosing correct term     (A1)

eg     \({8^{{\text{th}}}}{\text{ term, }}r = 7\), \(\left( \begin{array}{c}10\\7\end{array} \right)\), \({(x)^3}{(3)^7}\)

correct working     (A1)

eg     \(\left( \begin{array}{c}10\\7\end{array} \right)\) \({(x)^3}{(3)^7}\), \(\left( \begin{array}{c}10\\3\end{array} \right)\)\({(x)^3}{(3)^7}\),

\(262440{x^3}{\text{   (accept }}262000{x^3})\)     A1     N3

[4 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 1 - Algebra » 1.3 » The binomial theorem: expansion of \({\left( {a + b} \right)^n}\), \(n \in \mathbb{N}\) .
Show 31 related questions

View options