User interface language: English | Español

Date November 2016 Marks available 2 Reference code 16N.1.sl.TZ0.3
Level SL only Paper 1 Time zone TZ0
Command term Write down Question number 3 Adapted from N/A

Question

The values in the fourth row of Pascal’s triangle are shown in the following table.

N16/5/MATME/SP1/ENG/TZ0/03

Write down the values in the fifth row of Pascal’s triangle.

[2]
a.

Hence or otherwise, find the term in x3x3 in the expansion of (2x+3)5(2x+3)5.

[5]
b.

Markscheme

1, 5, 10, 10, 5, 1     A2     N2

[2 marks]

a.

evidence of binomial expansion with binomial coefficient     (M1)

eg(nr)anrbr(nr)anrbr, selecting correct term, (2x)5(3)0+5(2x)4(3)1+10(2x)3(3)2+(2x)5(3)0+5(2x)4(3)1+10(2x)3(3)2+

correct substitution into correct term     (A1)(A1)(A1)

eg10(2)3(3)2, (53)(2x)3(3)210(2)3(3)2, (53)(2x)3(3)2

 

Note: Award A1 for each factor.

 

720x3720x3     A1     N2

 

Notes: Do not award any marks if there is clear evidence of adding instead of multiplying.

Do not award final A1 for a final answer of 720, even if 720x3720x3 is seen previously.

 

[5 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 1 - Algebra » 1.3 » The binomial theorem: expansion of (a+b)n(a+b)n, nN .
Show 31 related questions

View options