Processing math: 100%

User interface language: English | Español

Date November 2013 Marks available 2 Reference code 13N.1.sl.TZ0.10
Level SL only Paper 1 Time zone TZ0
Command term Write down Question number 10 Adapted from N/A

Question

Let f(x)=(lnx)22, for x>0.

Let g(x)=1x. The following diagram shows parts of the graphs of f and g.

The graph of f has an x-intercept at x=p.

Show that f(x)=lnxx.

[2]
a.

There is a minimum on the graph of f. Find the x-coordinate of this minimum.

[3]
b.

Write down the value of p.

[2]
c.

The graph of g intersects the graph of f when x=q.

Find the value of q.

[3]
d.

The graph of g intersects the graph of f when x=q.

Let R be the region enclosed by the graph of f, the graph of g and the line x=p.

Show that the area of R is 12.

[5]
e.

Markscheme

METHOD 1

correct use of chain rule     A1A1

eg     2lnx2×1x, 2lnx2x

 

Note: Award A1 for 2lnx2x, A1 for ×1x.

 

f(x)=lnxx     AG     N0

[2 marks]

METHOD 2

correct substitution into quotient rule, with derivatives seen     A1

eg     2×2lnx×1x0×(lnx)24

correct working     A1

eg     4lnx×1x4

f(x)=lnxx     AG     N0

[2 marks]

a.

setting derivative =0     (M1)

eg     f(x)=0, lnxx=0

correct working     (A1)

eg     lnx=0, x=e0

x=1     A1     N2

[3 marks] 

b.

intercept when f(x)=0     (M1)

p=1     A1     N2

[2 marks]

c.

equating functions     (M1)

eg     f=g, lnxx=1x

correct working     (A1)

eg     lnx=1

q=e   (accept x=e)     A1     N2

[3 marks]

d.

evidence of integrating and subtracting functions (in any order, seen anywhere)     (M1)

eg     eq(1xlnxx)dxfg

correct integration lnx(lnx)22     A2

substituting limits into their integrated function and subtracting (in any order)     (M1)

eg     (lneln1)((lne)22(ln1)22)

 

Note: Do not award M1 if the integrated function has only one term.

 

correct working     A1

eg     (10)(120), 112

area=12     AG     N0

 

Notes: Candidates may work with two separate integrals, and only combine them at the end. Award marks in line with the markscheme.

 

[5 marks]

e.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.

Syllabus sections

Topic 6 - Calculus » 6.3 » Local maximum and minimum points.
Show 38 related questions

View options