User interface language: English | Español

Date November 2016 Marks available 2 Reference code 16N.1.sl.TZ0.1
Level SL only Paper 1 Time zone TZ0
Command term Find Question number 1 Adapted from N/A

Question

Let \(f(x) = {x^2} - 4x + 5\).

The function can also be expressed in the form \(f(x) = {(x - h)^2} + k\).

Find the equation of the axis of symmetry of the graph of \(f\).

[2]
a.

(i)     Write down the value of \(h\).

(ii)     Find the value of \(k\).

[4]
b.

Markscheme

correct approach     (A1)

eg \(\frac{{ - ( - 4)}}{2},{\text{ }}f'(x) = 2x - 4 = 0,{\text{ (}}{x^2} - 4x + 4) + 5 - 4\)

\(x = 2\) (must be an equation)     A1     N2

[2 marks]

a.

(i)     \(h = 2\)     A1     N1

(ii)     METHOD 1

valid attempt to find \(k\)     (M1)

eg\(\,\,\,\,\,\)\(f(2)\)

correct substitution into their function     (A1)

eg\(\,\,\,\,\,\)\({(2)^2} - 4(2) + 5\)

\(k = 1\)     A1     N2

METHOD 2

valid attempt to complete the square     (M1)

eg\(\,\,\,\,\,\)\({x^2} - 4x + 4\)

correct working     (A1)

eg\(\,\,\,\,\,\)\(({x^2} - 4x + 4) - 4 + 5,{\text{ }}{(x - 2)^2} + 1\)

\(k = 1\)     A1     N2

[4 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 2 - Functions and equations » 2.4
Show 55 related questions

View options