0%

DP IB Maths: AA HL

Topic Questions

Home / IB / Maths: AA HL / DP / Topic Questions / 3. Geometry & Trigonometry / 3.11 Vector Planes


3.11 Vector Planes

Question 1a

Marks: 2

A plane capital pi contains the point straight A left parenthesis 3 comma space 9 comma negative 1 right parenthesis and has a normal vector open parentheses table row 4 row cell negative 2 end cell row 2 end table close parentheses. 

a)
Find the equation of the plane in its Cartesian form.
    Assess your score
      

    Question 1b

    Marks: 2

    A second point straight B has coordinates left parenthesis negative 4 comma space 1 comma negative 3 right parenthesis

    b)
    Determine whether point B lies on the same plane.
      Assess your score
        

      Question 2a

      Marks: 3

      A plane capital pi has equation bold italic r equals open parentheses table row 3 row 3 row 2 end table close parentheses plus lambda space open parentheses table row cell negative 2 end cell row 5 row 3 end table close parentheses plus mu space open parentheses table row 5 row 2 row 7 end table close parentheses.

      A line with equation bold italic r equals open parentheses table row 6 row cell negative 2 end cell row 1 end table close parentheses plus beta space open parentheses table row 4 row 0 row 3 end table close parentheses intersects capital pi at a point straight Q

      a)
      Write down the equations of the line and the plane in their parametric forms.

        Assess your score
          

        Question 2b

        Marks: 5
        b)
        Given that the coordinates of straight Q are open parentheses table row cell 10 comma end cell cell negative 2 comma space 4 end cell end table close parentheses, find the values for beta comma space lambda and mu at the point of intersection.
          Assess your score
            

          Question 3a

          Marks: 2

          Consider the two planes capital pi subscript 1 and capital pi subscript 2 which can be defined by the equations 

          capital pi subscript 1 colon space x plus 2 y minus z equals 5 

          capital pi subscript 2 colon space minus 3 x minus y plus 8 z equals 1 

          a)
          Write down expressions for the normal vectors of each of the two planes.

           

            Assess your score
              

            Question 3b

            Marks: 5
            b)
            Hence find the angle between the two planes. Give your answer in radians.
              Assess your score
                

              Question 4a

              Marks: 2

              The points straight A comma space straight B and straight C have position vectors a comma space b and c respectively, relative to the origin straight O.

              The position vectors are given by 

              bold italic a equals 2 bold italic i plus 3 bold italic j minus bold italic k 

              bold italic b equals negative bold italic i plus 2 bold italic j plus 2 bold italic k 

              bold italic c equals bold italic i minus 4 bold italic j plus 3 bold italic k 

              a)
              Find the direction vectors AB with rightwards arrow on top and AC with rightwards arrow on top.
                Assess your score
                  

                Question 4b

                Marks: 2

                Points straight Astraight B and straight C all lie on a single plane. 

                b)
                Use the results from part (a) to write down the vector equation of the plane.
                  Assess your score
                    

                  Question 4c

                  Marks: 4

                  c)
                  Find the Cartesian equation of the plane.

                    Assess your score
                      

                    Question 5a

                    Marks: 2

                    A plane lies parallel to the line with equation bold italic r equals open parentheses table row 2 row cell negative 2 end cell row cell negative 1 end cell end table close parentheses plus beta space open parentheses table row 3 row 9 row 1 end table close parentheses and contains the points straight P and straight X with coordinates left parenthesis 5 comma space 4 comma space 5 right parenthesis  and left parenthesis negative 2 comma space 2 comma space 0 right parenthesis respectively. 

                    a)
                    Find the vector PX with rightwards arrow on top.
                      Assess your score
                        

                      Question 5b

                      Marks: 2
                      b)
                      By appropriate use of the vector product, find the normal to the plane.
                        Assess your score
                          

                        Question 5c

                        Marks: 2
                        c)
                        Hence find the Cartesian equation of the plane.
                          Assess your score
                            

                          Question 6a

                          Marks: 3

                          Consider the plane defined by the Cartesian equation 5 x minus 3 y minus z equals 13. 

                          a)
                          Show that the line with equation bold italic r space equals space open parentheses table row 3 row 0 row 2 end table close parentheses plus lambda space open parentheses table row 1 row 4 row cell negative 7 end cell end table close parentheses  lies in the plane.
                            Assess your score
                              

                            Question 6b

                            Marks: 3
                            b)
                            Show that the line with Cartesian equation x minus 2 equals fraction numerator y minus 6 over denominator 2 end fraction equals 2 minus z is parallel to the plane but does not lie in the plane.
                              Assess your score
                                

                              Question 7a

                              Marks: 3

                              Consider the planes capital pi subscript 1 comma space capital pi subscript 2 and capital pi subscript 3, which are defined by the equations 

                              capital pi subscript 1 colon space 3 x minus 5 y plus z equals 27 

                              capital pi subscript 2 colon negative 4 x plus y plus 2 z equals negative 10 

                              capital pi subscript 3 colon negative 2 x minus y minus z equals negative 1 

                              a)
                              By solving the system of equations represented by the three planes show that the system of equations has a unique solution.
                                Assess your score
                                  

                                Question 7b

                                Marks: 1
                                b)
                                Hence write down the coordinates of any point(s) where all three planes intersect.
                                  Assess your score
                                    

                                  Question 8a

                                  Marks: 4

                                  Consider the line straight L with vector equation bold italic r bold space equals left parenthesis 1 minus lambda right parenthesis bold italic i plus left parenthesis lambda minus 2 right parenthesis bold italic j plus left parenthesis 3 plus 2 lambda right parenthesis bold italic k and the plane capital pi with Cartesian equation 3 x minus 2 y plus z equals 11

                                  a)
                                  Find the angle in radians between the line straight L and the normal to the plane capital pi.
                                    Assess your score
                                      

                                    Question 8b

                                    Marks: 2
                                    b)
                                    Hence find the angle in radians between the line straight L and the plane capital pi.
                                      Assess your score
                                        

                                      Question 9a

                                      Marks: 2

                                      Two planes capital pi subscript 1 and capital pi subscript 2 are defined by the equations 

                                      capital pi subscript 1 colon 3 x minus 2 y plus 4 z equals 18 

                                      capital pi subscript 2 colon negative 2 x plus y plus 2 z equals 7 

                                      a)
                                      Write down expressions for the normal vectors of each of the two planes.
                                        Assess your score
                                          

                                        Question 9b

                                        Marks: 2
                                        b)
                                        Find the cross product of the two normal vectors.
                                          Assess your score
                                            

                                          Question 9c

                                          Marks: 3
                                          c)
                                          Find the coordinates of a point that lies on both planes.
                                            Assess your score
                                              

                                            Question 9d

                                            Marks: 2
                                            d)
                                            Hence find a vector equation of the line of intersection of the two planes.
                                              Assess your score
                                                

                                              Question 10a

                                              Marks: 4

                                              A line straight L subscript 1 is defined by the Cartesian equation fraction numerator x over denominator 3 d plus 1 end fraction equals fraction numerator y minus 3 over denominator 4 end fraction equals 5 minus z and a plane capital pi is defined by the Cartesian equation negative x plus d y minus 4 z equals negative 29,  where d is a real constant. 

                                              The line straight L subscript 1 lies in the plane capital pi.

                                              a)
                                              Use the fact that the line straight L subscript 1 lies in the plane capital pi to find the value of the constant d.
                                                Assess your score
                                                  

                                                Question 10b

                                                Marks: 2

                                                Another line, straight L subscript 2, passes through the origin and is perpendicular to the plane capital pi.

                                                b)
                                                Write down the equation of line straight L subscript 2 in vector form.
                                                  Assess your score
                                                    

                                                  Question 10c

                                                  Marks: 3
                                                  c)
                                                  By considering the parametric form of the equation for straight L subscript 2, or otherwise, determine the point of intersection between line straight L subscript 2 and the plane capital pi.
                                                    Assess your score
                                                      

                                                    Question 10d

                                                    Marks: 2
                                                    d)
                                                    Hence determine the minimum distance between the plane capital pi and the origin.
                                                      Assess your score