0%

DP IB Maths: AA HL

Topic Questions

Home / IB / Maths: AA HL / DP / Topic Questions / 1. Number & Algebra / 1.9 Further Complex Numbers


1.9 Further Complex Numbers

Question 1a

Marks: 3

Consider begin mathsize 16px style w equals z subscript 1 over z subscript 2 end style, where z subscript 1 equals 2 plus 2 square root of 3 straight i and z subscript 2 equals 2 plus 2 straight i.

a)
Express w spacein the form w equals a plus b straight i.
    Assess your score
      

    Question 1b

    Marks: 4
    b)
    Write the complex numbers z subscript 1 and z subscript 2 in the form r e to the power of straight i theta end exponent comma space r greater or equal than 0 comma space minus pi less than theta less than pi.
      Assess your score
        

      Question 1c

      Marks: 3
      c)
      Express w in the form r e to the power of straight i theta end exponent comma space r greater or equal than 0 comma space minus pi less than theta less than pi.
        Assess your score
          

        Question 2

        Marks: 6

        Solve the equation z cubed equals 27 straight i, giving your answers in the form a plus b straight i.

          Assess your score
            

          Question 3a

          Marks: 4

          Let z subscript 1 equals 6   cis left parenthesis straight pi over 6 right parenthesis and z subscript 2 equals 3 square root of 2 e to the power of straight i open parentheses straight pi over 4 close parentheses end exponent. 

          a)
          Giving your answers in the form r cis theta comma find 

          (i)
          z subscript 1 z subscript 2

          (ii)
          z subscript 1 over z subscript 2.
            Assess your score
              

            Question 3b

            Marks: 2
            b)
            Write z subscript 1and z subscript 2 in the form a plus b straight i.
              Assess your score
                
              Key Concepts
              Conversion of Forms

              Question 3c

              Marks: 2
              c)
              Find z subscript 1 plus z subscript 2 comma giving your answer in the form a plus b straight i.
                Assess your score
                  

                Question 3d

                Marks: 2

                It is given that z subscript 1 superscript asterisk times and z subscript 2 superscript asterisk times are the complex conjugates of z subscript 1and z subscript 2 respectively. 

                d)
                Find z subscript 1 superscript asterisk times plus z subscript 2 superscript asterisk times comma giving your answer in the form a plus b straight i.
                  Assess your score
                    

                  Question 4a

                  Marks: 2

                  Let z subscript 1 equals 2   cis left parenthesis straight pi over 3 right parenthesis and begin mathsize 16px style z subscript 2 equals 2 plus 2 straight i end style.

                  a)
                  Express

                  (i)
                  z subscript 1in the form a plus b straight i 

                  (ii)
                  z subscript 2 in the form r   cis theta

                    Assess your score
                      
                    Key Concepts
                    Conversion of Forms

                    Question 4b

                    Marks: 2
                    b)
                    Find w subscript 1 equals z subscript 1 plus z subscript 2 comma giving your answer in the form a plus b straight i.
                      Assess your score
                        

                      Question 4c

                      Marks: 3
                      c)
                      Find w subscript 2 equals z subscript 1 z subscript 2 comma giving your answer in the form r   cis theta.
                        Assess your score
                          

                        Question 4d

                        Marks: 2
                        d)
                        Sketch w subscript 1 and w subscript 2 on a single Argand diagram.
                          Assess your score
                            
                          Key Concepts
                          Argand Diagrams

                          Question 5a

                          Marks: 3

                          It is given that that z subscript 1 equals 2 straight e to the power of straight i open parentheses straight pi over 3 close parentheses end exponent and z subscript 2 equals 3   cis open parentheses nπ over 12 close parentheses comma space n element of straight integer numbers to the power of plus. 

                          a)
                          Find the value of  z subscript 1 z subscript 2 for  n equals 3. 
                            Assess your score
                              

                            Question 5b

                            Marks: 3
                            b)
                            Find the least value of n such that z subscript 1 z subscript 2 element of straight real numbers to the power of plus.
                              Assess your score
                                

                              Question 6a

                              Marks: 5

                              Consider the complex number begin mathsize 16px style w equals z subscript 1 over z subscript 2 end style  where z subscript 1 equals 3 minus square root of 3 straight i and begin mathsize 16px style z subscript 2 equals 2   c i s open parentheses fraction numerator 2 straight pi over denominator 3 end fraction close parentheses. end style 

                              a)
                              Express w in the form r   c i s theta.
                                Assess your score
                                  

                                Question 6b

                                Marks: 3
                                b)
                                Sketch z subscript 1 comma space z subscript 2  and w on the Argand diagram below. 

                                q6b_1-9_ib-maths-aa-hl

                                  Assess your score
                                    
                                  Key Concepts
                                  Argand Diagrams

                                  Question 6c

                                  Marks: 2
                                  c)
                                  Find the smallest positive integer value of n such that w to the power of n is a real number. 
                                    Assess your score
                                      

                                    Question 7a

                                    Marks: 4

                                    Consider the complex number z equals negative 1 plus square root of 3 i

                                    (a)
                                    Express z in the form r space cis space theta, where r greater than 0 and negative straight pi less than straight theta less or equal than straight pi.
                                      Assess your score
                                        

                                      Question 7b

                                      Marks: 4
                                      (b)
                                      Find the three roots of the equation z cubed equals negative 1 plus square root of 3 straight i, expressing your answers in the form r space cis space theta, where r greater than 0 and negative straight pi less than straight theta less or equal than straight pi.
                                        Assess your score
                                          

                                        Question 8a

                                        Marks: 4

                                        Consider the equation z to the power of 4 minus 1 equals 15, where z element of straight complex numbers.

                                        (a)
                                        Find the four distinct roots of the equation, giving your answers in the form a plus b straight i, where a comma b element of straight real numbers.
                                          Assess your score
                                            

                                          Question 8b

                                          Marks: 2
                                          (b)
                                          Represent the roots found in part (a) on the Argand diagram below.


                                          q8b_1-9_ib-maths-aa-hl
                                            Assess your score
                                              
                                            Key Concepts
                                            Argand Diagrams

                                            Question 8c

                                            Marks: 2
                                            (c)
                                            Find the area of the polygon whose vertices are represented by the four roots on the Argand diagram.
                                              Assess your score
                                                
                                              Key Concepts
                                              Argand Diagrams

                                              Question 9a

                                              Marks: 4

                                              Consider the complex numbers w equals 3 open parentheses cos straight pi over 3 minus isin straight pi over 3 close parentheses and z equals 3 minus square root of 3 straight i

                                              (a)
                                              Write w and z in the form r space cis space theta, where r greater than 0 and negative straight pi less than straight theta less or equal than straight pi.
                                                Assess your score
                                                  

                                                Question 9b

                                                Marks: 2
                                                (b)
                                                Find the modulus and argument of z w.
                                                  Assess your score
                                                    

                                                  Question 9c

                                                  Marks: 2
                                                  (c)
                                                  Write down the value of z w.
                                                    Assess your score
                                                      

                                                    Question 10a

                                                    Marks: 2

                                                    Let z equals 12 plus 16 straight i, where a comma b element of straight real numbers.

                                                    a)
                                                    Verify that 4 plus 2 straight i and negative 4 minus 2 straight i are the second roots of z.
                                                      Assess your score
                                                        

                                                      Question 10b

                                                      Marks: 4
                                                      b)
                                                      Hence, or otherwise, find two distinct roots of the equation w squared plus 4 w plus left parenthesis 1 minus 4 straight i right parenthesis equals 0, where w element of straight complex numbers. Give your answer in the form a plus b straight i, where a comma b element of straight real numbers.
                                                        Assess your score
                                                          

                                                        Question 11a

                                                        Marks: 1

                                                        The complex numbers omega subscript 1 equals 3 and omega subscript 2 equals 2 minus 2 straight i are roots of the cubic equation omega cubed plus p omega squared plus q omega plus r equals 0 comma where space p comma space q comma space r element of straight real numbers.

                                                        a)
                                                        Write down the third root, w subscript 3, of the equation.
                                                          Assess your score
                                                            

                                                          Question 11b

                                                          Marks: 4
                                                          b)
                                                          Find the values of space p comma space qand r.
                                                            Assess your score
                                                              

                                                            Question 11c

                                                            Marks: 4
                                                            c)
                                                            Express w subscript 1 comma w subscript 2 and w subscript 3 in the form r   c i s theta.
                                                              Assess your score