

3.11 Vector Planes

Question Paper

Course	DP IB Maths
Section	3. Geometry & Trigonometry
Торіс	3.11 Vector Planes
Difficulty	Medium

Time allowed:	90
Score:	/69
Percentage:	/100

Save My Exams Headto savemy exams.co.uk for more a we some resources

Question la

A plane Π contains the point A(3, 9, -1) and has a normal vector $\begin{pmatrix} 4 \\ -2 \\ 2 \end{pmatrix}$.

a)

Find the equation of the plane in its Cartesian form.

Question 1b

A second point B has coordinates (-4, 1, -3).

b) Determine whether point B lies on the same plane.

Question 2a

A plane
$$\Pi$$
 has equation $\mathbf{r} = \begin{pmatrix} 3 \\ 3 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -2 \\ 5 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} 5 \\ 2 \\ 7 \end{pmatrix}$.
A line with equation $\mathbf{r} = \begin{pmatrix} 6 \\ -2 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} 4 \\ 0 \\ 3 \end{pmatrix}$ intersects Π at a point Q.

a)

Write down the equations of the line and the plane in their parametric forms.

[3 marks]

[2 marks]

Question 2b

b)

Given that the coordinates of Q are (10, -2, 4), find the values for β , λ and μ at the point of intersection.

[5 marks]

Question 3a

Consider the two planes \varPi_1 and \varPi_2 which can be defined by the equations

$$\Pi_1: x + 2y - z = 5$$
$$\Pi_2: -3x - y + 8z = 1$$

a)

Write down expressions for the normal vectors of each of the two planes.

Question 3b

b)

Hence find the angle between the two planes. Give your answer in radians.

[5 marks]

Question 4a

The points A, B and C have position vectors a, b and c respectively, relative to the origin O.

The position vectors are given by

$$a = 2i + 3j - k$$
$$b = -i + 2j + 2k$$
$$c = i - 4j + 3k$$

a)

Find the direction vectors \overrightarrow{AB} and \overrightarrow{AC} .

Question 4b

 ${\sf Points}\,A,B\,{\sf and}\,C\,{\sf all}\,{\sf lie}\,{\sf on}\,{\sf a}\,{\sf single}\,{\sf plane}.$

b)

Use the results from part (a) to write down the vector equation of the plane.

[2 marks]

Question 4c

c) Find the Cartesian equation of the plane.

[4 marks]

Question 5a

	(2))	(3)	
A plane lies parallel to the line with equation ${m r}$ =	-2	$+\beta$	9	and contains the points P and X with coordinates (5, 4, 5)
	(-1))	(1)	
and $(-2, 2, 0)$ respectively.				
`				

a) Find the vector \overrightarrow{PX} .

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 5b

b) By appropriate use of the vector product, find the normal to the plane.

[2 marks]

Question 5c

c) Hence find the Cartesian equation of the plane.

[2 marks]

Question 6a

Consider the plane defined by the Cartesian equation 5x - 3y - z = 13.

a)

Show that the line with equation
$$\mathbf{r} = \begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 4 \\ -7 \end{pmatrix}$$
 lies in the plane.

[3 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 6b

b)

Show that the line with Cartesian equation $x - 2 = \frac{y - 6}{2} = 2 - z$ is parallel to the plane but does not lie in the plane.

[3 marks]

Question 7a

Consider the planes $\varPi_1,\,\varPi_2$ and \varPi_3 , which are defined by the equations

$$\Pi_{1}: 3x - 5y + z = 27$$
$$\Pi_{2}: -4x + y + 2z = -10$$
$$\Pi_{3}: -2x - y - z = -1$$

a)

By solving the system of equations represented by the three planes show that the system of equations has a unique solution.

[3 marks]

Question 7b

b)

Hence write down the coordinates of any point(s) where all three planes intersect.

[1mark]

Question 8a

Consider the line L with vector equation $\mathbf{r} = (1 - \lambda)\mathbf{i} + (\lambda - 2)\mathbf{j} + (3 + 2\lambda)\mathbf{k}$ and the plane Π with Cartesian equation 3x - 2y + z = 11.

a)

Find the angle in radians between the line L and the normal to the plane $\varPi.$

[4 marks]

Question 8b

b)

Hence find the angle in radians between the line L and the plane $\varPi.$

[2 marks]

Question 9a

Two planes \varPi_1 and \varPi_2 are defined by the equations

$$\Pi_1: 3x - 2y + 4z = 18$$
$$\Pi_2: -2x + y + 2z = 7$$

a)

Write down expressions for the normal vectors of each of the two planes.

[2 marks]

Page 8 of 11

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 9b

b) Find the cross product of the two normal vectors.

Question 9c

c) Find the coordinates of a point that lies on both planes.

[3 marks]

[2 marks]

Question 9d

d) Hence find a vector equation of the line of intersection of the two planes.

Save My Exams

Head to savemy exams.co.uk for more a we some resources

Question 10a

A line L_1 is defined by the Cartesian equation $\frac{x}{3d+1} = \frac{y-3}{4} = 5 - z$ and a plane Π is defined by the Cartesian equation -x + dy - 4z = -29, where *d* is a real constant.

The line L_1 lies in the plane $\varPi.$

a)

Use the fact that the line L_1 lies in the plane Π to find the value of the constant d.

[4 marks]

Question 10b

Another line, L_2 , passes through the origin and is perpendicular to the plane $\varPi.$

b)

Write down the equation of line \boldsymbol{L}_2 in vector form.

[2 marks]

Question 10c

c)

By considering the parametric form of the equation for L_2 , or otherwise, determine the point of intersection between line L_2 and the plane Π .

[3 marks]

Question 10d

d) Hence determine the minimum distance between the plane \varPi and the origin.