User interface language: English | Español

Date May 2019 Marks available 4 Reference code 19M.2.SL.TZ1.S_3
Level Standard Level Paper Paper 2 Time zone Time zone 1
Command term Find Question number S_3 Adapted from N/A

Question

Consider the function f(x)=x2e3xf(x)=x2e3x,  xR.

Find f(x).

[4]
a.

The graph of f has a horizontal tangent line at x=0 and at x=a. Find a.

[2]
b.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

choosing product rule     (M1)

eg   uv+vu(x2)(e3x)+(e3x)x2

correct derivatives (must be seen in the rule)      A1A1

eg   2x3e3x

f(x)=2xe3x+3x2e3x    A1 N4

[4 marks]

a.

valid method    (M1)

eg   f(x)=0

a=0.667(=23)  (accept  x=0.667)     A1 N2

[2 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 4—Statistics and probability » SL 4.1—Concepts, reliability and sampling techniques
Show 80 related questions
Topic 5—Calculus » AHL 5.9—Differentiating standard functions and derivative rules
Topic 4—Statistics and probability
Topic 5—Calculus

View options