DP Mathematics: Applications and Interpretation Questionbank

AHL 2.7—Composite functions, finding inverse function incl domain restriction
Path: |
Description
[N/A]Directly related questions
-
21M.1.AHL.TZ2.2b:
Find an expression for the inverse function f−1(x) f−1(x). The domain is not required.
-
21M.1.AHL.TZ2.2c:
Write down the range of f−1(x).
-
21M.1.AHL.TZ2.2a:
Find the range of f.
-
22M.1.AHL.TZ2.10a:
Find an expression for f-1(x). You are not required to state a domain.
-
22M.2.AHL.TZ1.6b:
Find the value of p and the value of q.
-
18M.1.AHL.TZ2.H_10a:
Find the inverse function f−1, stating its domain.
-
18M.1.AHL.TZ2.H_10b.i:
Express g(x) in the form A+Bx−2 where A, B are constants.
-
18M.1.AHL.TZ2.H_10b.ii:
Sketch the graph of y=g(x). State the equations of any asymptotes and the coordinates of any intercepts with the axes.
-
18M.1.AHL.TZ2.H_10c:
The function h is defined by h(x)=√x, for x ≥ 0.
State the domain and range of h∘g.
-
18M.2.AHL.TZ2.H_10a.i:
Sketch the graph of y=f(x) for −5π8⩽x⩽π8.
-
18M.2.AHL.TZ2.H_10a.ii:
With reference to your graph, explain why f is a function on the given domain.
-
18M.2.AHL.TZ2.H_10a.iii:
Explain why f has no inverse on the given domain.
-
18M.2.AHL.TZ2.H_10a.iv:
Explain why f is not a function for −3π4⩽x⩽π4.
-
18M.2.AHL.TZ2.H_10b:
Show that g(t)=(1+t1−t)2.
-
18M.2.AHL.TZ2.H_10c:
Sketch the graph of y=g(t) for t ≤ 0. Give the coordinates of any intercepts and the equations of any asymptotes.
-
18M.2.AHL.TZ2.H_10d.i:
Find α and β in terms of k.
-
18M.2.AHL.TZ2.H_10d.ii:
Show that α + β < −2.
-
18N.1.AHL.TZ0.H_3a:
For a=−π2, sketch the graph of y=g(x). Indicate clearly the maximum and minimum values of the function.
-
18N.1.AHL.TZ0.H_3b:
Write down the least value of a such that g has an inverse.
-
18N.1.AHL.TZ0.H_3c.i:
For the value of a found in part (b), write down the domain of g−1.
-
18N.1.AHL.TZ0.H_3c.ii:
For the value of a found in part (b), find an expression for g−1(x).
-
18N.3.AHL.TZ0.Hsrg_4a.i:
Find (f∘g)((x,y)).
-
18N.3.AHL.TZ0.Hsrg_4a.ii:
Find (g∘f)((x,y)).
-
18N.3.AHL.TZ0.Hsrg_4b:
State with a reason whether or not f and g commute.
-
18N.3.AHL.TZ0.Hsrg_4c:
Find the inverse of f.
-
17N.1.SL.TZ0.S_5a:
Find (g∘f)(x).
-
17N.1.SL.TZ0.S_5b:
Given that limx→+∞(g∘f)(x)=−3, find the value of b.
-
18M.1.SL.TZ1.S_3c:
On the grid above, sketch the graph of f −1.
-
17M.2.SL.TZ2.S_6a:
Show that (f∘g)(x)=x4−4x2+3.
-
17M.2.SL.TZ2.S_6b:
On the following grid, sketch the graph of (f∘g)(x), for 0⩽x⩽2.25.
-
17M.2.SL.TZ2.S_6c:
The equation (f∘g)(x)=k has exactly two solutions, for 0⩽x⩽2.25. Find the possible values of k.
-
19M.2.SL.TZ1.S_9a:
Find the gradient of L.
-
19M.2.SL.TZ1.S_9b:
Find u.
-
19M.2.SL.TZ1.S_9c:
Find the acute angle between y=x and L.
-
19M.2.SL.TZ1.S_9d.i:
Find (f∘f)(x).
-
19M.2.SL.TZ1.S_9d.ii:
Hence, write down f−1(x).
-
19M.2.SL.TZ1.S_9d.iii:
Hence or otherwise, find the obtuse angle formed by the tangent line to f at x=8 and the tangent line to f at x=2.
-
16N.2.SL.TZ0.S_1a:
Find f(8).
-
16N.2.SL.TZ0.S_1b:
Find (g∘f)(x).
-
16N.2.SL.TZ0.S_1c:
Solve (g∘f)(x)=0.