User interface language: English | Español

Date May 2019 Marks available 2 Reference code 19M.1.SL.TZ2.S_9
Level Standard Level Paper Paper 1 Time zone Time zone 2
Command term Find Question number S_9 Adapted from N/A

Question

Let θθ be an obtuse angle such that sinθ=35sinθ=35.

Let f(x)=exsinx3x4f(x)=exsinx3x4.

Find the value of tanθtanθ.

[4]
a.

Line LL passes through the origin and has a gradient of tanθtanθ. Find the equation of LL.

[2]
b.

Find the derivative of ff.

[5]
c.

The following diagram shows the graph of ff  for 0 ≤ xx ≤ 3. Line MM is a tangent to the graph of ff at point P.

Given that MM is parallel to LL, find the xx-coordinate of P.

[4]
d.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

evidence of valid approach       (M1)

eg   sketch of triangle with sides 3 and 5, cos2θ=1sin2θcos2θ=1sin2θ

correct working       (A1)

eg  missing side is 4 (may be seen in sketch), cosθ=45cosθ=45,  cosθ=45cosθ=45

tanθ=34tanθ=34       A2 N4

[4 marks]

a.

correct substitution of either gradient or origin into equation of line        (A1)

(do not accept y=mx+by=mx+b)

eg   y=xtanθy=xtanθ,   y0=m(x0)y0=m(x0),   y=mxy=mx

y=34xy=34x     A2 N4

Note: Award A1A0 for L=34xL=34x.

[2 marks]

b.

ddx(3x4)=34ddx(3x4)=34  (seen anywhere, including answer)       A1

choosing product rule       (M1)

eg   uv+vu

correct derivatives (must be seen in a correct product rule)       A1A1

eg   cosx,  ex

f(x)=excosx+exsinx34  (=ex(cosx+sinx)34)     A1 N5

[5 marks]

c.

valid approach to equate their gradients       (M1)

eg   f=tanθ,   f=34excosx+exsinx34=34,   ex(cosx+sinx)34=34

correct equation without ex        (A1)

eg   sinx=cosx,  cosx+sinx=0,  sinxcosx=1

correct working       (A1)

eg   tanθ=1,  x=135

x=3π4 (do not accept 135)       A1 N1

Note: Do not award the final A1 if additional answers are given.

[4 marks]

 

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.

Syllabus sections

Topic 4—Statistics and probability » SL 4.1—Concepts, reliability and sampling techniques
Show 80 related questions
Topic 3—Geometry and trigonometry » AHL 3.8—Unit circle, Pythag identity, solving trig equations graphically
Topic 5—Calculus » AHL 5.9—Differentiating standard functions and derivative rules
Topic 3—Geometry and trigonometry
Topic 4—Statistics and probability
Topic 5—Calculus

View options