User interface language: English | Español

Date May 2021 Marks available 5 Reference code 21M.2.SL.TZ1.6
Level Standard Level Paper Paper 2 Time zone Time zone 1
Command term Find Question number 6 Adapted from N/A

Question

Consider the expansion of (3+x2)n+1, where n+ .

Given that the coefficient of x4 is 20412, find the value of n.

Markscheme

METHOD 1

product of a binomial coefficient, a power of 3 (and a power of x2) seen         (M1)

evidence of correct term chosen           (A1)

C2n+1×3n+1-2×x22 =nn+12×3n-1×x4  OR  n-r=1

equating their coefficient to 20412 or their term to 20412x4         (M1)

 

EITHER

C2n+1×3n-1=20412           (A1)

 

OR

Crr+2×3r=20412r=6           (A1)

 

THEN

n=7         A1

 


METHOD 2

3n+11+x23n+1

product of a binomial coefficient, and a power of x23  OR  13 seen         (M1)

evidence of correct term chosen           (A1)

3n+1×nn+12!×x232 =3n-12nn+1x4 

equating their coefficient to 20412 or their term to 20412x4         (M1)

3n-1×nn+12=20412           (A1)

n=7         A1

 

[5 marks]

Examiners report

[N/A]

Syllabus sections

Topic 1—Number and algebra » SL 1.9—Binomial theorem where n is an integer
Show 32 related questions
Topic 1—Number and algebra

View options