Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js

User interface language: English | Español

Date May 2019 Marks available 6 Reference code 19M.2.AHL.TZ1.H_5
Level Additional Higher Level Paper Paper 2 Time zone Time zone 1
Command term Find Question number H_5 Adapted from N/A

Question

The function f is defined by f(x)=secx+2, 0x<π2.

Use integration by parts to find (lnx)2dx.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

METHOD 1

write as 1×(lnx)2dx       (M1)

=x(lnx)2x×2(lnx)xdx(=x(lnx)22lnx)      M1A1

=x(lnx)22xlnx+2dx       (M1)(A1)

=x(lnx)22xlnx+2x+c      A1

 

METHOD 2

let u=lnx      M1

dudx=1x

u2eudu      A1

=u2eu2ueudu      M1

=u2eu2ueu+2eudu      A1

=u2eu2ueu+2eu+c

=x(lnx)22xlnx+2x+c      M1A1

 

METHOD 3

Setting up u=lnx and dvdx=lnx      M1

lnx(xlnxx)(lnx1)dx     M1A1

=x(lnx)2xlnx(xlnxx)+x+c     M1A1

=x(lnx)22xlnx+2x+c      A1

 

 

[6 marks]

Examiners report

[N/A]

Syllabus sections

Topic 5 —Calculus » AHL 5.16—Integration by substitution, parts and repeated parts
Show 27 related questions
Topic 5 —Calculus

View options