Date | May 2019 | Marks available | 6 | Reference code | 19M.2.AHL.TZ1.H_5 |
Level | Additional Higher Level | Paper | Paper 2 | Time zone | Time zone 1 |
Command term | Find | Question number | H_5 | Adapted from | N/A |
Question
The function f is defined by f(x)=secx+2, 0⩽x<π2.
Use integration by parts to find ∫(lnx)2dx.
Markscheme
* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.
METHOD 1
write as ∫1×(lnx)2dx (M1)
=x(lnx)2−∫x×2(lnx)xdx(=x(lnx)2−∫2lnx) M1A1
=x(lnx)2−2xlnx+∫2dx (M1)(A1)
=x(lnx)2−2xlnx+2x+c A1
METHOD 2
let u=lnx M1
dudx=1x
∫u2eudu A1
=u2eu−∫2ueudu M1
=u2eu−2ueu+∫2eudu A1
=u2eu−2ueu+2eu+c
=x(lnx)2−2xlnx+2x+c M1A1
METHOD 3
Setting up u=lnx and dvdx=lnx M1
lnx(xlnx−x)−∫(lnx−1)dx M1A1
=x(lnx)2−xlnx−(xlnx−x)+x+c M1A1
=x(lnx)2−2xlnx+2x+c A1
[6 marks]