User interface language: English | Español

Date May 2019 Marks available 6 Reference code 19M.2.AHL.TZ1.H_5
Level Additional Higher Level Paper Paper 2 Time zone Time zone 1
Command term Find Question number H_5 Adapted from N/A

Question

The function f is defined by  f ( x ) = sec x + 2 , 0 x < π 2 .

Use integration by parts to find ( ln x ) 2 d x .

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

METHOD 1

write as  1 × ( ln x ) 2 d x        (M1)

= x ( ln x ) 2 x × 2 ( ln x ) x d x ( = x ( ln x ) 2 2 ln x )       M1A1

= x ( ln x ) 2 2 x ln x + 2 d x        (M1)(A1)

= x ( ln x ) 2 2 x ln x + 2 x + c       A1

 

METHOD 2

let  u = ln x       M1

d u d x = 1 x

u 2 e u d u       A1

= u 2 e u 2 u e u d u       M1

= u 2 e u 2 u e u + 2 e u d u       A1

= u 2 e u 2 u e u + 2 e u + c

= x ( ln x ) 2 2 x ln x + 2 x + c       M1A1

 

METHOD 3

Setting up  u = ln x and  d v d x = ln x       M1

ln x ( x ln x x ) ( ln x 1 ) d x      M1A1

= x ( ln x ) 2 x ln x ( x ln x x ) + x + c      M1A1

= x ( ln x ) 2 2 x ln x + 2 x + c       A1

 

 

[6 marks]

Examiners report

[N/A]

Syllabus sections

Topic 5 —Calculus » AHL 5.16—Integration by substitution, parts and repeated parts
Show 27 related questions
Topic 5 —Calculus

View options