User interface language: English | Español

Date May Example questions Marks available 5 Reference code EXM.3.AHL.TZ0.3
Level Additional Higher Level Paper Paper 3 Time zone Time zone 0
Command term Show that Question number 3 Adapted from N/A

Question

This question will investigate methods for finding definite integrals of powers of trigonometrical functions.

Let I n = 0 π 2 si n n x d x , n N .

 

Let  J n = 0 π 2 co s n x d x , n N .

Let  T n = 0 π 4 ta n n x d x , n N .

Find the exact values of  I 0 I 1 and  I 2 .

[6]
a.

Use integration by parts to show that  I n = n 1 n I n 2 , n 2 .

[5]
b.i.

Explain where the condition n 2 was used in your proof.

[1]
b.ii.

Hence, find the exact values of  I 3 and I 4 .

[2]
c.

Use the substitution  x = π 2 u to show that J n = I n .

[4]
d.

Hence, find the exact values of  J 5 and  J 6

[2]
e.

Find the exact values of  T 0 and  T 1 .

[3]
f.

Use the fact that ta n 2 x = se c 2 x 1 to show that T n = 1 n 1 T n 2 , n 2 .

[3]
g.i.

Explain where the condition n 2 was used in your proof.

[1]
g.ii.

Hence, find the exact values of  T 2 and  T 3 .

[2]
h.

Markscheme

I 0 = 0 π 2 1 d x = [ x ] 0 π 2 = π 2       M1A1

I 1 = 0 π 2 sin x d x = [ cos x ] 0 π 2 = 1       M1A1

I 2 = 0 π 2 si n 2 x d x = 0 π 2 1 cos 2 x 2 d x = [ x 2 sin 2 x 4 ] 0 π 2 = π 4       M1A1

[6 marks]

a.

u = si n n 1 x                                 v = cos x

d u d x = ( n 1 ) si n n 2 x cos x       d v d x = sin x

I n = [ si n n 1 x cos x ] 0 π 2 + 0 π 2 ( n 1 ) si n n 2 x cos 2 x d x       M1A1A1

= 0 + 0 π 2 ( n 1 ) si n n 2 x ( 1 si n 2 x ) d x = ( n 1 ) ( I n 2 I n )       M1A1

n I n = ( n 1 ) I n 2 I n = ( n 1 ) n I n 2         AG

[6 marks]

b.i.

need n 2 so that  si n n 1 π 2 = 0 in  [ si n n 1 x cos x ] 0 π 2        R1

[1 mark]

b.ii.

I 3 = 2 3 I 1 = 2 3 I 4 = 3 4 I 2 = 3 π 16       A1A1

[2 marks]

c.

x = π 2 u d x d u = 1       A1

J n = 0 π 2 co s n x d x = π 2 0 co s n ( π 2 u ) d u = π 2 0 si n n u d u = 0 π 2 si n n u d u = I n       M1A1A1AG

[4 marks]

d.

J 5 = I 5 = 4 5 I 3 = 4 5 × 2 3 = 8 15 J 6 = I 6 = 5 6 I 4 = 5 6 × 3 π 16 = 5 π 32      A1A1

[2 marks]

e.

T 0  =  0 π 4 1 d x = [ x ] 0 π 4 = π 4       A1

T 1  =  0 π 4 tan d x = [ ln | cos x | ] 0 π 4 = ln 1 2 = ln 2        M1A1

[3 marks]

f.

T n = 0 π 4 ta n n x d x = 0 π 4 ta n n 2 x ta n 2 x d x = 0 π 4 ta n n 2 x ( se c 2 x 1 ) d x          M1

0 π 4 ta n n 2 x se c 2 x d x 0 π 4 ta n n 2 x d x = [ ta n n 1 x n 1 ] 0 π 4 T n 2 = 1 n 1 T n 2         A1A1AG

[3 marks]

g.i.

need n 2  so that the powers of tan in  0 π 4 ta n n 2 x se c 2 x d x 0 π 4 ta n n 2 x d x are not negative         R1   

 

[1 mark]

g.ii.

T 2 = 1 T 0 = 1 π 4          A1 

T 3 = 1 2 T 1 = 1 2 ln 2          A1

[2 marks]

h.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
c.
[N/A]
d.
[N/A]
e.
[N/A]
f.
[N/A]
g.i.
[N/A]
g.ii.
[N/A]
h.

Syllabus sections

Topic 5 —Calculus » AHL 5.16—Integration by substitution, parts and repeated parts
Show 27 related questions
Topic 5 —Calculus

View options