Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js

User interface language: English | Español

Date May 2018 Marks available 4 Reference code 18M.1.AHL.TZ2.H_6
Level Additional Higher Level Paper Paper 1 (without calculator) Time zone Time zone 2
Command term Find and Hence or otherwise Question number H_6 Adapted from N/A

Question

Consider the functions f,g, defined for xR, given by f(x)=exsinx and g(x)=excosx.

Hence, or otherwise, find π0exsinxdx.

Markscheme

METHOD 1

Attempt to add f(x) and g(x)      (M1)

f(x)+g(x)=2exsinx    A1

π0exsinxdx=[ex2(sinx+cosx)]π0 (or equivalent)      A1

Note: Condone absence of limits.

=12(1+eπ)    A1

 

METHOD 2

I=exsinxdx

=excosxexcosxdx OR =exsinx+excosxdx     M1A1

=exsinxexcosxexsinxdx

I=12ex(sinx+cosx)     A1

π0exsinxdx=12(1+eπ)    A1

[4 marks]

Examiners report

[N/A]

Syllabus sections

Topic 5 —Calculus » SL 5.3—Differentiating polynomials, n E Z
Show 91 related questions
Topic 5 —Calculus » SL 5.6—Differentiating polynomials n E Q. Chain, product and quotient rules
Topic 5 —Calculus » SL 5.11—Definite integrals, areas under curve onto x-axis and areas between curves
Topic 5 —Calculus » AHL 5.16—Integration by substitution, parts and repeated parts
Topic 5 —Calculus

View options