User interface language: English | Español

Date May 2019 Marks available 5 Reference code 19M.1.AHL.TZ2.H_4
Level Additional Higher Level Paper Paper 1 (without calculator) Time zone Time zone 2
Command term Find Question number H_4 Adapted from N/A

Question

Using the substitution  u = sin x , find co s 3 x d x sin x .

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

u = sin x d u = cos x d x        (A1)

valid attempt to write integral in terms of u and d u       M1

co s 3 x d x sin x = ( 1 u 2 ) d u u       A1

= ( u 1 2 u 3 2 ) d u

= 2 u 1 2 2 u 5 2 5 ( + c )        (A1)

= 2 sin x 2 ( sin x ) 5 5 ( + c )  or equivalent       A1

[5 marks]

Examiners report

[N/A]

Syllabus sections

Topic 5 —Calculus » AHL 5.16—Integration by substitution, parts and repeated parts
Show 27 related questions
Topic 5 —Calculus

View options