Processing math: 100%

User interface language: English | Español

Date November 2017 Marks available 7 Reference code 17N.2.AHL.TZ0.H_8
Level Additional Higher Level Paper Paper 2 Time zone Time zone 0
Command term Show that Question number H_8 Adapted from N/A

Question

By using the substitution x2=2secθ, show that dxxx44=14arccos(2x2)+c.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

EITHER

x2=2secθ

2xdxdθ=2secθtanθ     M1A1

dxxx44

=secθtanθdθ2secθ4sec2θ4     M1A1

OR

x=2(secθ)12 (=2(cosθ)12)

dxdθ=22(secθ)12tanθ (=22(cosθ)32sinθ)     M1A1

dxxx44

=2(secθ)12tanθdθ22(secθ)124sec2θ4 (=2(cosθ)32sinθdθ22(cosθ)124sec2θ4)     M1A1

THEN

=12tanθdθ2tanθ     (M1)

=14dθ

=θ4+c     A1

x2=2secθcosθ=2x2     M1

 

Note:     This M1 may be seen anywhere, including a sketch of an appropriate triangle.

 

so θ4+c=14arccos(2x2)+c     AG

[7 marks]

Examiners report

[N/A]

Syllabus sections

Topic 5 —Calculus » AHL 5.16—Integration by substitution, parts and repeated parts
Show 27 related questions
Topic 5 —Calculus

View options