User interface language: English | Español

Date May 2018 Marks available 3 Reference code 18M.1.AHL.TZ2.H_8
Level Additional Higher Level Paper Paper 1 (without calculator) Time zone Time zone 2
Command term Find and Hence Question number H_8 Adapted from N/A

Question

Use the substitution  u = x 1 2  to find  d x x 3 2 + x 1 2 .

[4]
a.

Hence find the value of  1 2 1 9 d x x 3 2 + x 1 2 , expressing your answer in the form arctan q , where  q Q .

[3]
b.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

d u d x = 1 2 x 1 2  (accept  d u = 1 2 x 1 2 d x or equivalent)       A1

substitution, leading to an integrand in terms of  u      M1

2 u d u u 3 + u  or equivalent      A1

= 2 arctan  ( x ) ( + c )      A1

[4 marks]

 

a.

 

1 2 1 9 d x x 3 2 + x 1 2 = arctan 3 − arctan 1     A1

tan(arctan 3 − arctan 1) =  3 1 1 + 3 × 1       (M1)

tan(arctan 3 − arctan 1) =  1 2

arctan 3 − arctan 1 = arctan  1 2      A1

[3 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 5 —Calculus » AHL 5.16—Integration by substitution, parts and repeated parts
Show 27 related questions
Topic 5 —Calculus

View options