User interface language: English | Español

Date May 2017 Marks available 4 Reference code 17M.1.AHL.TZ2.H_6
Level Additional Higher Level Paper Paper 1 (without calculator) Time zone Time zone 2
Command term Show that Question number H_6 Adapted from N/A

Question

Using the substitution x=tanθx=tanθ show that 101(x2+1)2dx=π40cos2θdθ101(x2+1)2dx=π40cos2θdθ.

[4]
a.

Hence find the value of 101(x2+1)2dx101(x2+1)2dx.

[3]
b.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

let x=tanθx=tanθ

dxdθ=sec2θdxdθ=sec2θ     (A1)

1(x2+1)2dx=sec2θ(tan2θ+1)2dθ1(x2+1)2dx=sec2θ(tan2θ+1)2dθ     M1

 

Note:     The method mark is for an attempt to substitute for both xx and dxdx.

 

=1sec2θdθ=1sec2θdθ (or equivalent)     A1

when x=0, θ=0x=0, θ=0 and when x=1, θ=π4x=1, θ=π4     M1

π40cos2θdθπ40cos2θdθ    AG

[4 marks]

a.

(101(x2+1)2dx=π40cos2θdθ)=12π40(1+cos2θ)dθ(101(x2+1)2dx=π40cos2θdθ)=12π40(1+cos2θ)dθ   M1

=12[θ+sin2θ2]π40=12[θ+sin2θ2]π40     A1

=π8+14=π8+14     A1

[3 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 5 —Calculus » AHL 5.16—Integration by substitution, parts and repeated parts
Show 27 related questions
Topic 5 —Calculus

View options