Date | May 2017 | Marks available | 4 | Reference code | 17M.1.AHL.TZ2.H_6 |
Level | Additional Higher Level | Paper | Paper 1 (without calculator) | Time zone | Time zone 2 |
Command term | Show that | Question number | H_6 | Adapted from | N/A |
Question
Using the substitution x=tanθx=tanθ show that 1∫01(x2+1)2dx=π4∫0cos2θdθ1∫01(x2+1)2dx=π4∫0cos2θdθ.
Hence find the value of 1∫01(x2+1)2dx1∫01(x2+1)2dx.
Markscheme
* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.
let x=tanθx=tanθ
⇒dxdθ=sec2θ⇒dxdθ=sec2θ (A1)
∫1(x2+1)2dx=∫sec2θ(tan2θ+1)2dθ∫1(x2+1)2dx=∫sec2θ(tan2θ+1)2dθ M1
Note: The method mark is for an attempt to substitute for both xx and dxdx.
=∫1sec2θdθ=∫1sec2θdθ (or equivalent) A1
when x=0, θ=0x=0, θ=0 and when x=1, θ=π4x=1, θ=π4 M1
π4∫0cos2θdθπ4∫0cos2θdθ AG
[4 marks]
(1∫01(x2+1)2dx=π4∫0cos2θdθ)=12π4∫0(1+cos2θ)dθ(1∫01(x2+1)2dx=π4∫0cos2θdθ)=12π4∫0(1+cos2θ)dθ M1
=12[θ+sin2θ2]π40=12[θ+sin2θ2]π40 A1
=π8+14=π8+14 A1
[3 marks]