Date | May 2021 | Marks available | 2 | Reference code | 21M.1.SL.TZ1.6 |
Level | Standard Level | Paper | Paper 1 (without calculator) | Time zone | Time zone 1 |
Command term | Show that | Question number | 6 | Adapted from | N/A |
Question
Show that sin 2x+cos 2x-1=2 sin x(cos x-sin x)sin2x+cos2x−1=2sinx(cosx−sinx).
Hence or otherwise, solve sin 2x+cos 2x-1+cos x-sin x=0sin2x+cos2x−1+cosx−sinx=0 for 0<x<2π0<x<2π.
Markscheme
Note: Do not award the final A1 for proofs which work from both sides to find a common expression other than 2 sin x cos x-2 sin2 x2sinxcosx−2sin2x.
METHOD 1 (LHS to RHS)
attempt to use double angle formula for sin 2xsin2x or cos 2xcos2x M1
LHS =2 sin x cos x+cos 2x-1=2sinxcosx+cos2x−1 OR
sin 2x+1-2 sin2 x-1sin2x+1−2sin2x−1 OR
2 sin x cos x+1-2 sin2 x-12sinxcosx+1−2sin2x−1
=2 sin x cos x-2 sin2 x=2sinxcosx−2sin2x A1
sin 2x+cos 2x-1=2 sin x(cos x-sin x)=sin2x+cos2x−1=2sinx(cosx−sinx)= RHS AG
METHOD 2 (RHS to LHS)
RHS =2 sin x cos x-2 sin2 x=2sinxcosx−2sin2x
attempt to use double angle formula for sin 2xsin2x or cos 2xcos2x M1
=sin 2x+1-2 sin2 x-1=sin2x+1−2sin2x−1 A1
=sin 2x+cos 2x-1==sin2x+cos2x−1= LHS AG
[2 marks]
attempt to factorise M1
(cos x-sin x)(2 sin x+1)=0(cosx−sinx)(2sinx+1)=0 A1
recognition of cos x=sin x⇒sin xcos x=tan x=1cosx=sinx⇒sinxcosx=tanx=1 OR sin x=-12sinx=−12 (M1)
one correct reference angle seen anywhere, accept degrees (A1)
π4π4 OR π6π6 (accept -π6, 7π6−π6,7π6)
Note: This (M1)(A1) is independent of the previous M1A1.
x=7π6,11π6, π4, 5π4x=7π6,11π6,π4,5π4 A2
Note: Award A1 for any two correct (radian) answers.
Award A1A0 if additional values given with the four correct (radian) answers.
Award A1A0 for four correct answers given in degrees.
[6 marks]