User interface language: English | Español

Date November 2018 Marks available 6 Reference code 18N.1.SL.TZ0.S_7
Level Standard Level Paper Paper 1 (without calculator) Time zone Time zone 0
Command term Find Question number S_7 Adapted from N/A

Question

Given that sin x = 1 3 , where 0 < x < π 2 , find the value of cos 4 x .

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

METHOD 1

correct substitution into formula for  cos ( 2 x ) or  sin ( 2 x )       (A1)

eg    1 2 ( 1 3 ) 2 ,   2 ( 8 3 ) 2 1 ,   2 ( 1 3 ) ( 8 3 ) ,   ( 8 3 ) 2 ( 1 3 ) 2

cos ( 2 x ) = 7 9   or  sin ( 2 x ) = 2 8 9 ( = 32 9 = 4 2 9 )   (may be seen in substitution)     A2

recognizing 4 x is double angle of 2 x (seen anywhere)      (M1)

eg    cos ( 2 ( 2 x ) ) ,   2 co s 2 ( 2 θ ) 1 1 2 si n 2 ( 2 θ ) ,   co s 2 ( 2 θ ) si n 2 ( 2 θ )

correct substitution of their value of cos ( 2 x ) and/or sin ( 2 x ) into formula for cos ( 4 x )     (A1)

eg    2 ( 7 9 ) 2 1 ,   98 81 1 ,   1 2 ( 2 8 9 ) 2 ,   1 64 81 ,   ( 7 9 ) 2 ( 2 8 9 ) 2 ,   49 81 32 81

cos ( 4 x ) = 17 81       A1 N2

 

 

METHOD 2

recognizing 4 x is double angle of 2 x (seen anywhere)      (M1)

eg    cos ( 2 ( 2 x ) )

double angle identity for 2 x     (M1)

eg    2 co s 2 ( 2 θ ) 1 1 2 si n 2 ( 2 x ) ,   co s 2 ( 2 θ ) si n 2 ( 2 θ )

correct expression for  cos ( 4 x ) in terms of  sin x and/or  cos x      (A1)

eg    2 ( 1 2 si n 2 θ ) 2 1 ,   1 2 ( 2 sin x cos x ) 2 ,   ( 1 2 si n 2 θ ) 2 ( 2 sin θ cos θ ) 2

correct substitution for  sin x and/or  cos x      A1

eg    2 ( 1 2 ( 1 3 ) 2 ) 2 1 ,   2 ( 1 4 ( 1 3 ) 2 + 4 ( 1 3 ) 4 ) 1 ,   1 2 ( 2 × 1 3 × 8 3 ) 2

correct working      (A1)

eg    2 ( 49 81 ) 1 ,   1 2 ( 32 81 ) ,   49 81 32 81

cos ( 4 x ) = 17 81       A1 N2

 

[6 marks]

Examiners report

[N/A]

Syllabus sections

Topic 3— Geometry and trigonometry » SL 3.6—Pythagorean identity, double angles
Show 23 related questions
Topic 3— Geometry and trigonometry

View options