Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

User interface language: English | Español

Date November 2018 Marks available 6 Reference code 18N.1.SL.TZ0.S_7
Level Standard Level Paper Paper 1 (without calculator) Time zone Time zone 0
Command term Find Question number S_7 Adapted from N/A

Question

Given that sinx=13, where 0<x<π2, find the value of cos4x.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

METHOD 1

correct substitution into formula for cos(2x) or sin(2x)      (A1)

eg   12(13)2,  2(83)21,  2(13)(83),  (83)2(13)2

cos(2x)=79  or  sin(2x)=289(=329=429)  (may be seen in substitution)     A2

recognizing 4x is double angle of 2x (seen anywhere)      (M1)

eg   cos(2(2x)),  2cos2(2θ)112sin2(2θ),  cos2(2θ)sin2(2θ)

correct substitution of their value of cos(2x) and/or sin(2x) into formula for cos(4x)     (A1)

eg   2(79)21,  98811,  12(289)2,  16481,  (79)2(289)2,  49813281

cos(4x)=1781      A1 N2

 

 

METHOD 2

recognizing 4x is double angle of 2x (seen anywhere)      (M1)

eg   cos(2(2x))

double angle identity for 2x     (M1)

eg   2cos2(2θ)112sin2(2x),  cos2(2θ)sin2(2θ)

correct expression for cos(4x) in terms of sinx and/or cosx     (A1)

eg   2(12sin2θ)21,  12(2sinxcosx)2,  (12sin2θ)2(2sinθcosθ)2

correct substitution for sinx and/or cosx     A1

eg   2(12(13)2)21,  2(14(13)2+4(13)4)1,  12(2×13×83)2

correct working      (A1)

eg   2(4981)1,  12(3281),  49813281

cos(4x)=1781      A1 N2

 

[6 marks]

Examiners report

[N/A]

Syllabus sections

Topic 3— Geometry and trigonometry » SL 3.6—Pythagorean identity, double angles
Show 23 related questions
Topic 3— Geometry and trigonometry

View options