Date | November 2018 | Marks available | 6 | Reference code | 18N.1.SL.TZ0.S_7 |
Level | Standard Level | Paper | Paper 1 (without calculator) | Time zone | Time zone 0 |
Command term | Find | Question number | S_7 | Adapted from | N/A |
Question
Given that sinx=13, where 0<x<π2, find the value of cos4x.
Markscheme
* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.
METHOD 1
correct substitution into formula for cos(2x) or sin(2x) (A1)
eg 1−2(13)2, 2(√83)2−1, 2(13)(√83), (√83)2−(13)2
cos(2x)=79 or sin(2x)=2√89(=√329=4√29) (may be seen in substitution) A2
recognizing 4x is double angle of 2x (seen anywhere) (M1)
eg cos(2(2x)), 2cos2(2θ)−1, 1−2sin2(2θ), cos2(2θ)−sin2(2θ)
correct substitution of their value of cos(2x) and/or sin(2x) into formula for cos(4x) (A1)
eg 2(79)2−1, 9881−1, 1−2(2√89)2, 1−6481, (79)2−(2√89)2, 4981−3281
cos(4x)=1781 A1 N2
METHOD 2
recognizing 4x is double angle of 2x (seen anywhere) (M1)
eg cos(2(2x))
double angle identity for 2x (M1)
eg 2cos2(2θ)−1, 1−2sin2(2x), cos2(2θ)−sin2(2θ)
correct expression for cos(4x) in terms of sinx and/or cosx (A1)
eg 2(1−2sin2θ)2−1, 1−2(2sinxcosx)2, (1−2sin2θ)2−(2sinθcosθ)2
correct substitution for sinx and/or cosx A1
eg 2(1−2(13)2)2−1, 2(1−4(13)2+4(13)4)−1, 1−2(2×13×√83)2
correct working (A1)
eg 2(4981)−1, 1−2(3281), 4981−3281
cos(4x)=1781 A1 N2
[6 marks]