User interface language: English | Español

Date May 2017 Marks available 7 Reference code 17M.1.SL.TZ2.S_7
Level Standard Level Paper Paper 1 (without calculator) Time zone Time zone 2
Command term Solve Question number S_7 Adapted from N/A

Question

Solve log 2 ( 2 sin x ) + log 2 ( cos x ) = 1 , for 2 π < x < 5 π 2 .

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

correct application of log a + log b = log a b     (A1)

eg log 2 ( 2 sin x cos x ) ,   log 2 + log ( sin x ) + log ( cos x )

correct equation without logs     A1

eg 2 sin x cos x = 2 1 ,   sin x cos x = 1 4 ,   sin 2 x = 1 2

recognizing double-angle identity (seen anywhere)     A1

eg log ( sin 2 x ) ,   2 sin x cos x = sin 2 x ,   sin 2 x = 1 2

evaluating sin 1 ( 1 2 ) = π 6   ( 30 )     (A1)

correct working     A1

eg x = π 12 + 2 π ,   2 x = 25 π 6 ,   29 π 6 ,   750 ,   870 ,   x = π 12 and x = 5 π 12 , one correct final answer

x = 25 π 12 ,   29 π 12 (do not accept additional values)     A2     N0

[7 marks]

Examiners report

[N/A]

Syllabus sections

Topic 3— Geometry and trigonometry » SL 3.6—Pythagorean identity, double angles
Show 23 related questions
Topic 3— Geometry and trigonometry

View options