DP Mathematics HL Questionbank
Algebraic and geometric approaches to the sum and difference of two vectors.
Path: |
Description
[N/A]Directly related questions
- 18M.1.hl.TZ2.9c: Find the area of the parallelogram ABCD.
- 18M.1.hl.TZ2.9b: Show that p = 1, q = 1 and r = 4.
- 18M.1.hl.TZ2.9a.ii: Using vector algebra, show that...
- 18M.1.hl.TZ2.9a.i: Explain why ABCD is a parallelogram.
- 16M.2.hl.TZ2.9b: Given that...
- 16M.2.hl.TZ2.9a: Show that (i) \({\left| {\overrightarrow {{\text{OC}}} } \right|^2} = |\)a\({|^2} +...
- 16M.1.hl.TZ1.8: O, A, B and C are distinct points such that \(\overrightarrow {{\text{OA}}} = \) a,...
- 17N.1.hl.TZ0.9e: Given that area \(\Delta {\text{OAB}} = k({\text{area }}\Delta {\text{CAD}})\), find the value of...
- 17N.1.hl.TZ0.9d: Deduce an expression for \(\overrightarrow {{\text{CD}}} \) in terms of a and b only.
- 17N.1.hl.TZ0.9c: Show that \(\mu = \frac{1}{{13}}\), and find the value of \(\lambda \).
- 17N.1.hl.TZ0.9b.ii: Find an expression for \(\overrightarrow {{\text{OD}}} \) in terms of a, b and \(\mu \).
- 17N.1.hl.TZ0.9b.i: Find an expression for \(\overrightarrow {{\text{OD}}} \) in terms of a, b and \(\lambda \);
- 17N.1.hl.TZ0.9a.ii: Find, in terms of a and b \(\overrightarrow {{\text{AF}}} \).
- 17N.1.hl.TZ0.9a.i: Find, in terms of a and b \(\overrightarrow {{\text{OF}}} \).
- 11M.1.hl.TZ2.6a: Find an expression for \(\overrightarrow {{\text{CB}}} \) and for...
- 10M.1.hl.TZ2.3: The three vectors \(\boldsymbol{a}\), \(\boldsymbol{b}\) and \(\boldsymbol{c}\) are given...
- 10N.1.hl.TZ0.10: Let \(\alpha \) be the angle between the unit vectors a and b, where...
- 14M.1.hl.TZ1.12b: Find the coordinates of M, the mid-point of [OB].
- 14M.1.hl.TZ2.6: PQRS is a rhombus. Given that \(\overrightarrow {{\text{PQ}}} = \) \(\boldsymbol{a}\) and...
- 14M.1.hl.TZ1.12a: Show that the points \({\text{O}}(0,{\text{ }}0,{\text{ }}0)\),...
- 15N.1.hl.TZ0.13a: Find \(\overrightarrow {{\text{BR}}} \) in terms of \({{a}}\), \({{b}}\) and \({{c}}\).
- 15N.2.hl.TZ0.10a: find the vectors \({{a}}\) and \({{b}}\).