User interface language: English | Español

Date November 2017 Marks available 1 Reference code 17N.1.hl.TZ0.9
Level HL only Paper 1 Time zone TZ0
Command term Find Question number 9 Adapted from N/A

Question

In the following diagram, OAOA = a, OBOB = b. C is the midpoint of [OA] and OF=16FBOF=16FB.

N17/5/MATHL/HP1/ENG/TZ0/09

It is given also that AD=λAFAD=λAF and CD=μCBCD=μCB, where λ, μR.

Find, in terms of a and OF.

[1]
a.i.

Find, in terms of a and AF.

[2]
a.ii.

Find an expression for OD in terms of a, b and λ;

[2]
b.i.

Find an expression for OD in terms of a, b and μ.

[2]
b.ii.

Show that μ=113, and find the value of λ.

[4]
c.

Deduce an expression for CD in terms of a and b only.

[2]
d.

Given that area ΔOAB=k(area ΔCAD), find the value of k.

[5]
e.

Markscheme

OF=17b     A1

[1 mark]

a.i.

AF=OFOA     (M1)

=17ba     A1

[2 marks]

a.ii.

OD= a +λ(17ba) (=(1λ)a+λ7b)     M1A1

[2 marks]

b.i.

OD=12 a +μ(12a+b) (=(12μ2)a+μb)     M1A1

[2 marks]

b.ii.

equating coefficients:     M1

λ7=μ, 1λ=1μ2     A1

solving simultaneously:     M1

λ=713, μ=113     A1AG

[4 marks]

c.

CD=113CB

=113(b12a) (=126a+113b)     M1A1

[2 marks]

d.

METHOD 1

area ΔACD=12CD×AC×sinAˆCB     (M1)

area ΔACB=12CB×AC×sinAˆCB     (M1)

ratio area ΔACDarea ΔACB=CDCB=113     A1

k=area ΔOABarea ΔCAD=13area ΔCAB×area ΔOAB     (M1)

=13×2=26     A1

 

METHOD 2

area ΔOAB=12|a×b|     A1

area ΔCAD=12|CA×CD| or 12|CA×AD|     M1

=12|12a×(126a+113b)|

=12|12a×(126a)+12a×113b|     (M1)

=12×12×113|a×b| (=152|a×b|)     A1

area ΔOAB=k(area ΔCAD)

12|a×b|=k152|a×b|

k=26     A1

[5 marks]

e.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
c.
[N/A]
d.
[N/A]
e.

Syllabus sections

Topic 4 - Core: Vectors » 4.1 » Algebraic and geometric approaches to the sum and difference of two vectors.

View options