User interface language: English | Español

Date May 2014 Marks available 6 Reference code 14M.1.hl.TZ2.6
Level HL only Paper 1 Time zone TZ2
Command term Express, Hence, and Show that Question number 6 Adapted from N/A

Question

PQRS is a rhombus. Given that \(\overrightarrow {{\text{PQ}}}  = \) \(\boldsymbol{a}\) and \(\overrightarrow {{\text{QR}}}  = \) \(\boldsymbol{b}\),

(a)     express the vectors \(\overrightarrow {{\text{PR}}} \) and \(\overrightarrow {{\text{QS}}} \) in terms of \(\boldsymbol{a}\) and \(\boldsymbol{b}\);

(b)     hence show that the diagonals in a rhombus intersect at right angles.

Markscheme

(a)     \(\overrightarrow {{\text{PR}}}  = \) ab     A1

\(\overrightarrow {{\text{QS}}}  = \) ba     A1

[2 marks]

 

(b)     \(\overrightarrow {{\text{PR}}}  \cdot \overrightarrow {{\text{QS}}}  = \) (a + b) \( \cdot \) (a)     M1

\( = |\)b\({|^2} - |\)a\({|^2}\)     A1

for a rhombus \(|\)a\(| = |\)b\(|\)     R1

hence \(|\)b\({|^2} - |\)a\({|^2} = 0\)     A1

 

Note:     Do not award the final A1 unless R1 is awarded.

 

hence the diagonals intersect at right angles     AG

[4 marks]

 

Total [6 marks]

Examiners report

[N/A]

Syllabus sections

Topic 4 - Core: Vectors » 4.2 » The definition of the scalar product of two vectors.

View options