Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2014 Marks available 6 Reference code 14M.1.hl.TZ2.6
Level HL only Paper 1 Time zone TZ2
Command term Express, Hence, and Show that Question number 6 Adapted from N/A

Question

PQRS is a rhombus. Given that PQ= \boldsymbol{a} and \overrightarrow {{\text{QR}}}  =  \boldsymbol{b},

(a)     express the vectors \overrightarrow {{\text{PR}}} and \overrightarrow {{\text{QS}}} in terms of \boldsymbol{a} and \boldsymbol{b};

(b)     hence show that the diagonals in a rhombus intersect at right angles.

Markscheme

(a)     \overrightarrow {{\text{PR}}}  = ab     A1

\overrightarrow {{\text{QS}}}  = ba     A1

[2 marks]

 

(b)     \overrightarrow {{\text{PR}}}  \cdot \overrightarrow {{\text{QS}}}  = (a + b) \cdot (a)     M1

= |b{|^2} - |a{|^2}     A1

for a rhombus |a| = |b|     R1

hence |b{|^2} - |a{|^2} = 0     A1

 

Note:     Do not award the final A1 unless R1 is awarded.

 

hence the diagonals intersect at right angles     AG

[4 marks]

 

Total [6 marks]

Examiners report

[N/A]

Syllabus sections

Topic 4 - Core: Vectors » 4.2 » The definition of the scalar product of two vectors.

View options