Date | May 2014 | Marks available | 6 | Reference code | 14M.1.hl.TZ2.6 |
Level | HL only | Paper | 1 | Time zone | TZ2 |
Command term | Express, Hence, and Show that | Question number | 6 | Adapted from | N/A |
Question
PQRS is a rhombus. Given that →PQ= \boldsymbol{a} and \overrightarrow {{\text{QR}}} = \boldsymbol{b},
(a) express the vectors \overrightarrow {{\text{PR}}} and \overrightarrow {{\text{QS}}} in terms of \boldsymbol{a} and \boldsymbol{b};
(b) hence show that the diagonals in a rhombus intersect at right angles.
Markscheme
(a) \overrightarrow {{\text{PR}}} = a + b A1
\overrightarrow {{\text{QS}}} = b − a A1
[2 marks]
(b) \overrightarrow {{\text{PR}}} \cdot \overrightarrow {{\text{QS}}} = (a + b) \cdot (b − a) M1
= |b{|^2} - |a{|^2} A1
for a rhombus |a| = |b| R1
hence |b{|^2} - |a{|^2} = 0 A1
Note: Do not award the final A1 unless R1 is awarded.
hence the diagonals intersect at right angles AG
[4 marks]
Total [6 marks]